poincar e sobolev and rubio de francia
play

Poincar e, Sobolev and Rubio de Francia Ezequiel Rela Departamento - PowerPoint PPT Presentation

Poincar e, Sobolev and Rubio de Francia Ezequiel Rela Departamento de Matem atica Facultad de Ciencias Exactas y Naturales - Universidad de Buenos Aires CONICET Joint work with Carlos P erez Moreno (BCAM) XIV Encuentro Nacional de


  1. Poincar´ e, Sobolev and Rubio de Francia Ezequiel Rela Departamento de Matem´ atica Facultad de Ciencias Exactas y Naturales - Universidad de Buenos Aires CONICET Joint work with Carlos P´ erez Moreno (BCAM) XIV Encuentro Nacional de Analistas Alberto P. Calder´ on 22 de noviembre de 2018

  2. Outline What? Why? How? Ezequiel Rela Poincar´ e-Sobolev-RdF

  3. Outline What? � 1 � 1 � 1 � � 1 � q p | f − f Q | q w |∇ f | p w ≤ C w ℓ ( Q ) w ( Q ) w ( Q ) Q Q Why? A ( x ) ξ.ξ ≈ | ξ | 2 w ( x ) div( A ( x ) ∇ u ) = 0 , How? Unweighted L 1 inequalities involving “Self-improving functionals” � − | f − f Q | dx ≤ a ( Q ) Q Ezequiel Rela Poincar´ e-Sobolev-RdF

  4. Main problem � 1 � 1 � 1 � � 1 � q p | f − f Q | q w |∇ f | p w ≤ C w ℓ ( Q ) w ( Q ) w ( Q ) Q Q Ezequiel Rela Poincar´ e-Sobolev-RdF

  5. Main problem � 1 � 1 � 1 � � 1 � q p | f − f Q | q w ≤ C w ℓ ( Q ) |∇ f | p w w ( Q ) w ( Q ) Q Q For a given p ≥ 1. Ezequiel Rela Poincar´ e-Sobolev-RdF

  6. Main problem � 1 � 1 � 1 � � 1 � q p | f − f Q | q w ≤ C w ℓ ( Q ) |∇ f | p w w ( Q ) w ( Q ) Q Q For a given p ≥ 1. There is a natural choice for a class A p of weights. Ezequiel Rela Poincar´ e-Sobolev-RdF

  7. Main problem � 1 � 1 � 1 � � 1 � q p | f − f Q | q w ≤ C w ℓ ( Q ) |∇ f | p w w ( Q ) w ( Q ) Q Q For a given p ≥ 1. There is a natural choice for a class A p of weights. We try to reach the best possible q = p ∗ w . Ezequiel Rela Poincar´ e-Sobolev-RdF

  8. Main problem � 1 � 1 � 1 � � 1 � ≤ C w ℓ ( Q ) q p | f − f Q | q w |∇ f | p w w ( Q ) w ( Q ) Q Q For a given p ≥ 1. There is a natural choice for a class A p of weights. We try to reach the best possible q = p ∗ w . Keeping track of the constant C w ! Ezequiel Rela Poincar´ e-Sobolev-RdF

  9. e in ( R n , dx ) Unweighted Poincar´ (1 , 1) Poincar´ e inequality 1 � | f − f Q | dx � ℓ ( Q ) 1 � |∇ f | dx | Q | | Q | Q Q Ezequiel Rela Poincar´ e-Sobolev-RdF

  10. e in ( R n , dx ) Unweighted Poincar´ (1 , 1) Poincar´ e inequality 1 � | f − f Q | dx � ℓ ( Q ) 1 � |∇ f | dx | Q | | Q | Q Q ( p , p ) Poincar´ e inequality, 2 ≤ n , 1 ≤ p < n . � 1 � 1 � 1 � 1 � � p p | f − f Q | p dx |∇ f | p � ℓ ( Q ) | Q | | Q | Q Q Ezequiel Rela Poincar´ e-Sobolev-RdF

  11. e in ( R n , dx ) Unweighted Poincar´ (1 , 1) Poincar´ e inequality 1 � | f − f Q | dx � ℓ ( Q ) 1 � |∇ f | dx | Q | | Q | Q Q ( p , p ) Poincar´ e inequality, 2 ≤ n , 1 ≤ p < n . � 1 � 1 � 1 � 1 � � p p | f − f Q | p dx |∇ f | p � ℓ ( Q ) | Q | | Q | Q Q Higher order Poincar´ e inequality with polynomials, m ∈ N | f ( y ) − π Q ( y ) | dy � ℓ ( Q ) m 1 � � |∇ m f | dy | Q | | Q | Q Q Ezequiel Rela Poincar´ e-Sobolev-RdF

  12. Poincar´ e - Sobolev Poincar´ e-Sobolev inequality � 1 � 1 � 1 � 1 � � p ∗ p | f − f Q | p ∗ dx |∇ f | p � ℓ ( Q ) | Q | | Q | Q Q Ezequiel Rela Poincar´ e-Sobolev-RdF

  13. Poincar´ e - Sobolev Poincar´ e-Sobolev inequality � 1 � 1 � 1 � 1 � � p ∗ p | f − f Q | p ∗ dx |∇ f | p � ℓ ( Q ) | Q | | Q | Q Q np p ∗ = n − p Ezequiel Rela Poincar´ e-Sobolev-RdF

  14. Weights w 1 − p ′ � p − 1 � � � � � [ w ] A p := sup − w − Q Q Q � w ( E ) � 1 | E | 1 p p | Q | ≤ [ w ] A p w ( Q ) � � � � w − 1 � L ∞ ( Q ) [ w ] A 1 := sup − w Q Q Equivalently: Mw ( x ) ≤ Cw ( x ) a.e. x ∈ R n Ezequiel Rela Poincar´ e-Sobolev-RdF

  15. Hardy-Littlewood maximal function � Mf ( x ) = sup − | f ( y ) | dy , Q ∋ x Q M : L p ( w dx ) → L p ( w dx ) ⇐ ⇒ w ∈ A p 1 < p < ∞ M : L 1 ( w dx ) → L 1 , ∞ ( w dx ) ⇐ ⇒ w ∈ A 1 1 p − 1 � M � L p ( w ) � p ′ [ w ] A p , 1 < p < ∞ 1 p � M � L p , ∞ ( w ) ≈ [ w ] A p , 1 ≤ p < ∞ Ezequiel Rela Poincar´ e-Sobolev-RdF

  16. Fractional integrals and Poincar´ e The following are equivalent � � 1) − | f ( x ) − f Q | dx � ℓ ( Q ) − |∇ f ( x ) | dx Q Q � ( |∇ f | χ Q )( y ) 2) | f ( x ) − f Q | � I 1 ( |∇ f | χ Q )( x ) = | x − y | n − 1 dy R n As a consequence of 2), | f ( x ) − f Q | � I 1 ( |∇ f | χ Q )( x ) � ℓ ( Q ) M ( |∇ f | )( x ) 1 p � f − f Q � L p , ∞ Q , w � ℓ ( Q ) � M ( |∇ f | ) � L p , ∞ Q , w � ℓ ( Q )[ w ] A p �∇ f � L p Q ( w ) Ezequiel Rela Poincar´ e-Sobolev-RdF

  17. Fractional integrals and Poincar´ e Truncation or weak implies strong lemma: Lemma Let g ≥ 0 , Lipschitz. Suppose a weak (1 , p ) -type estimate for the measures µ, ν and p > 1 : � t µ ( { x ∈ R n : g ( x ) > t } ) 1 / p � sup R n |∇ g ( x ) | d ν t > 0 Then the strong estimate also holds, namely � � g � L p µ � R n |∇ g ( x ) | d ν Ezequiel Rela Poincar´ e-Sobolev-RdF

  18. Fractional integrals and Poincar´ e Theorem Let w ∈ A p , then � 1 � 1 � 1 � 1 � 1 � p p | f − f Q | p w |∇ f | p w p ≤ [ w ] A p ℓ ( Q ) w ( Q ) w ( Q ) Q Q How to deal with higher order Poincar´ e inequality with polynomials? No truncation... | f ( y ) − π Q ( y ) | dy � ℓ ( Q ) m 1 � � |∇ m f | dy | Q | | Q | Q Q Ezequiel Rela Poincar´ e-Sobolev-RdF

  19. Self improving functionals Starting point � − | f − f Q | d µ ≤ a ( Q ) , a : Q → (0 , ∞ ) Q Ezequiel Rela Poincar´ e-Sobolev-RdF

  20. Self improving functionals Starting point � − | f − f Q | d µ ≤ a ( Q ) , a : Q → (0 , ∞ ) Q Hypothesis on the functional a � a ( P ) p w ( P ) ≤ � a � p a ( Q ) p w ( Q ) P ∈ Λ a ∈ D p ( w ) (1) Ezequiel Rela Poincar´ e-Sobolev-RdF

  21. Self improving functionals Theorem (Franchi-Perez-Wheeden - 1998) Let w ∈ A ∞ and a ∈ D p ( w ) for some p > 0 . Let f such that 1 � | f − f Q | ≤ a ( Q ) . | Q | Q Then � f − f Q � L p , ∞ ≤ C � a � a ( Q ) . w Q , w ( Q ) Only for the weak norm C depends exponentially on [ w ] ∞ . Ezequiel Rela Poincar´ e-Sobolev-RdF

  22. New D p -type condition Small families A family of pairwise disjoint subcubes { Q i } ⊂ D ( Q ) is in S ( L ) , L > 1 if | Q i | ≤ | Q | � L i Smallness preserving functionals a ∈ SD s p ( w ) for 0 ≤ p < ∞ and s > 1 if � p � 1 s � a ( Q i ) p w ( Q i ) ≤ � a � p a ( Q ) p w ( Q ) L i whenever { Q i } ∈ S ( L ) Ezequiel Rela Poincar´ e-Sobolev-RdF

  23. Main Theorem Theorem (A) Let w be any weight, p ≥ 1 , s > 1 and a ∈ SD s p ( w ) . If 1 � | f − f Q | ≤ a ( Q ) , | Q | Q then � 1 � 1 � p | f − f Q | p w ≤ C n s � a � s a ( Q ) w ( Q ) Q Ezequiel Rela Poincar´ e-Sobolev-RdF

  24. About the proof � | f − f Q | a ∈ SD s Hypothesis: − ≤ 1, p ( w ) a ( Q ) Q Ezequiel Rela Poincar´ e-Sobolev-RdF

  25. About the proof � | f − f Q | a ∈ SD s Hypothesis: − ≤ 1, p ( w ) a ( Q ) Q Calderon - Zygmund decomposition � � | f − f Q | � � � x ∈ Q : M d Ω L := a ( Q ) χ Q ( x ) > L = Q j Q j � | f − f Q | dy ≤ L 2 n L < − a ( Q ) Q j Ezequiel Rela Poincar´ e-Sobolev-RdF

  26. About the proof � | f − f Q | a ∈ SD s Hypothesis: − ≤ 1, p ( w ) a ( Q ) Q Calderon - Zygmund decomposition � � | f − f Q | � � � x ∈ Q : M d Ω L := a ( Q ) χ Q ( x ) > L = Q j Q j � | f − f Q | dy ≤ L 2 n L < − a ( Q ) Q j Key step: Go from ( · ) Q to ( · ) Q j Ezequiel Rela Poincar´ e-Sobolev-RdF

  27. About the proof � | f − f Q | a ∈ SD s Hypothesis: − ≤ 1, p ( w ) a ( Q ) Q Calderon - Zygmund decomposition � � | f − f Q | � � � x ∈ Q : M d Ω L := a ( Q ) χ Q ( x ) > L = Q j Q j � | f − f Q | dy ≤ L 2 n L < − a ( Q ) Q j Key step: Go from ( · ) Q to ( · ) Q j Triangular inequality is not a good idea �� � � � | f − f Q | p wdx ≤ 2 p − 1 | f − f Q j | p wdx + | f Q j − f Q | p wdx Q j Q j Q j Ezequiel Rela Poincar´ e-Sobolev-RdF

  28. About the proof Calder´ on - Zygmund decomposition into good and bad parts | g ( x ) | ≤ 2 n L  f − f Q  f ( x ) − f Q i a ( Q ) = g Q + b Q , � b Q ( x ) = χ Q i ( x ) a ( Q )  i 1   � 1 p | f − f Q | p � 1 � 1 � p | b Q j | p wdx ≤ 2 n L + � wdx   a ( Q ) p w ( Q ) w ( Q ) Q Ω L j Ezequiel Rela Poincar´ e-Sobolev-RdF

  29. About the proof � � � p wdx b Q j | p wdx � � � � | ≤ � b Q j Ω L Q i j i p a ( Q i ) p w ( Q i ) � � 1 � f − f Q i � � � = wdx � � a ( Q ) p w ( Q i ) a ( Q i ) � � Q i i X p � a ( Q i ) p w ( Q i ) , ≤ a ( Q ) p i where X is the quantity defined by p � 1 / p � � � 1 � f − f Q � � X = sup wdx . � � w ( Q ) a ( Q ) � � Q Q Ezequiel Rela Poincar´ e-Sobolev-RdF

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend