plan of the lecture
play

Plan of the Lecture Review: control, feedback, etc. Todays topic: - PowerPoint PPT Presentation

Plan of the Lecture Review: control, feedback, etc. Todays topic: state-space models of systems; linearization Plan of the Lecture Review: control, feedback, etc. Todays topic: state-space models of systems; linearization


  1. Plan of the Lecture ◮ Review: control, feedback, etc. ◮ Today’s topic: state-space models of systems; linearization

  2. Plan of the Lecture ◮ Review: control, feedback, etc. ◮ Today’s topic: state-space models of systems; linearization Goal: a general framework that encompasses all examples of interest. Once we have mastered this framework, we can proceed to analysis and then to design .

  3. Plan of the Lecture ◮ Review: control, feedback, etc. ◮ Today’s topic: state-space models of systems; linearization Goal: a general framework that encompasses all examples of interest. Once we have mastered this framework, we can proceed to analysis and then to design . Reading: FPE, Sections 1.1, 1.2, 2.1–2.4, 7.2, 9.2.1. Chapter 2 has lots of cool examples of system models!!

  4. Notation Reminder We will be looking at dynamic systems whose evolution in time is described by differential equations with external inputs . We will not write the time variable t explicitly, so we use x instead of x ( t ) x ′ ( t ) or d x ˙ instead of x d t x ′′ ( t ) or d 2 x ¨ instead of x d t 2 etc.

  5. Example 1: Mass-Spring System x m u

  6. Example 1: Mass-Spring System x m u Newton’s second law (translational motion): F = ma ���� total force

  7. Example 1: Mass-Spring System x m u Newton’s second law (translational motion): F = ma = spring force + friction + external force ���� total force

  8. Example 1: Mass-Spring System x m u Newton’s second law (translational motion): F = ma = spring force + friction + external force ���� total force spring force = − kx (Hooke’s law) friction force = − ρ ˙ x (Stokes’ law — linear drag, only an approximation!!)

  9. Example 1: Mass-Spring System x m u Newton’s second law (translational motion): F = ma = spring force + friction + external force ���� total force spring force = − kx (Hooke’s law) friction force = − ρ ˙ x (Stokes’ law — linear drag, only an approximation!!) F = − kx − ρ ˙ x + u

  10. Example 1: Mass-Spring System x m u Newton’s second law (translational motion): F = ma = spring force + friction + external force ���� total force spring force = − kx (Hooke’s law) friction force = − ρ ˙ x (Stokes’ law — linear drag, only an approximation!!) m ¨ x = − kx − ρ ˙ x + u

  11. Example 1: Mass-Spring System x m u Newton’s second law (translational motion): F = ma = spring force + friction + external force ���� total force spring force = − kx (Hooke’s law) friction force = − ρ ˙ x (Stokes’ law — linear drag, only an approximation!!) m ¨ x = − kx − ρ ˙ x + u Move x, ˙ x, ¨ x to the LHS, u to the RHS: m ¨ x + ρ ˙ x + kx = u

  12. Example 1: Mass-Spring System x m u Newton’s second law (translational motion): F = ma = spring force + friction + external force ���� total force spring force = − kx (Hooke’s law) friction force = − ρ ˙ x (Stokes’ law — linear drag, only an approximation!!) m ¨ x = − kx − ρ ˙ x + u Move x, ˙ x, ¨ x to the LHS, u to the RHS: x + ρ x + k mx = u ¨ m ˙ m

  13. Example 1: Mass-Spring System x m u Newton’s second law (translational motion): F = ma = spring force + friction + external force ���� total force spring force = − kx (Hooke’s law) friction force = − ρ ˙ x (Stokes’ law — linear drag, only an approximation!!) m ¨ x = − kx − ρ ˙ x + u Move x, ˙ x, ¨ x to the LHS, u to the RHS: x + ρ x + k mx = u ¨ m ˙ 2nd-order linear ODE m

  14. Example 1: Mass-Spring System x m u x + ρ x + k mx = u ¨ m ˙ 2nd-order linear ODE m

  15. Example 1: Mass-Spring System x m u x + ρ x + k mx = u ¨ m ˙ 2nd-order linear ODE m Canonical form: convert to a system of 1st-order ODEs

  16. Example 1: Mass-Spring System x m u x + ρ x + k mx = u ¨ m ˙ 2nd-order linear ODE m Canonical form: convert to a system of 1st-order ODEs x = v ˙ (definition of velocity) v = − ρ mv − k mx + 1 ˙ mu

  17. Example 1: Mass-Spring System x m u State-space model: express in matrix form � ˙ � 0 � � � x � � 0 � x 1 = + u m − ρ 1 − k v ˙ v m m

  18. Example 1: Mass-Spring System x m u State-space model: express in matrix form � ˙ � 0 � � � x � � 0 � x 1 = + u m − ρ 1 − k v ˙ v m m Important: start reviewing your linear algebra now !! ◮ matrix-vector multiplication; eigenvalues and eigenvectors; etc.

  19. General n -Dimensional State-Space Model     x 1 u 1 . .  ∈ R n  ∈ R m  .   .  state x = input u = . .   x n u m

  20. General n -Dimensional State-Space Model     x 1 u 1 . .  ∈ R n  ∈ R m  .   .  state x = input u = . .   x n u m           x 1 ˙ x 1 u 1 A B . . .  =  + . . . . . .         n × n n × m ˙ x n x n u m matrix matrix

  21. General n -Dimensional State-Space Model     x 1 u 1 . .  ∈ R n  ∈ R m  .   .  state x = input u = . .   x n u m           x 1 ˙ x 1 u 1 A B . . .  =  + . . . . . .         n × n n × m ˙ x n x n u m matrix matrix x = Ax + Bu ˙

  22. Partial Measurements     x 1 u 1 . .   ∈ R n     ∈ R m . . state x = input u = . .   x n u m

  23. Partial Measurements     x 1 u 1 . .    ∈ R n   ∈ R m  . . state x = input u = . .   x n u m   y 1 .  ∈ R p  .  output y = y = Cx C – p × n matrix .  y p

  24. Partial Measurements     x 1 u 1 . .   ∈ R n    ∈ R m  . . state x = input u = . .   x n u m   y 1 .  ∈ R p  .  output y = y = Cx C – p × n matrix .  y p x = Ax + Bu ˙ y = Cx

  25. Partial Measurements     x 1 u 1 . .    ∈ R n   ∈ R m  . . state x = input u = . .   x n u m   y 1 .  ∈ R p  .  output y = y = Cx C – p × n matrix .  y p x = Ax + Bu ˙ y = Cx Example: if we only care about (or can only measure) x 1 , then   x 1 x 2   � �   y = x 1 = 1 0 . . . 0 .  .  .   x n

  26. State-Space Models: Bottom Line x = Ax + Bu ˙ y = Cx

  27. State-Space Models: Bottom Line x = Ax + Bu ˙ y = Cx State-space models are useful and convenient for writing down system models for different types of systems, in a unified manner.

  28. State-Space Models: Bottom Line x = Ax + Bu ˙ y = Cx State-space models are useful and convenient for writing down system models for different types of systems, in a unified manner. When working with state-space models, what are states and what are inputs ?

  29. State-Space Models: Bottom Line x = Ax + Bu ˙ y = Cx State-space models are useful and convenient for writing down system models for different types of systems, in a unified manner. When working with state-space models, what are states and what are inputs ? — match against ˙ x = Ax + Bu

  30. Example 2: RL Circuit V R + − + + I V S V L − −

  31. Example 2: RL Circuit V R + − + + I V S V L − − − V S + V R + V L = 0 Kirchhoff’s voltage law V R = RI Ohm’s law V L = L ˙ I Faraday’s law − V S + RI + L ˙ I = 0

  32. Example 2: RL Circuit V R + − + + I V S V L − − − V S + V R + V L = 0 Kirchhoff’s voltage law V R = RI Ohm’s law V L = L ˙ I Faraday’s law − V S + RI + L ˙ I = 0 I = − R LI + 1 ˙ LV S (1st-order system)

  33. Example 2: RL Circuit V R + − + + I V S V L − − − V S + V R + V L = 0 Kirchhoff’s voltage law V R = RI Ohm’s law V L = L ˙ I Faraday’s law − V S + RI + L ˙ I = 0 I = − R LI + 1 ˙ LV S (1st-order system) I – state, V S – input

  34. Example 2: RL Circuit V R + − + + I V S V L − − − V S + V R + V L = 0 Kirchhoff’s voltage law V R = RI Ohm’s law V L = L ˙ I Faraday’s law − V S + RI + L ˙ I = 0 I = − R LI + 1 ˙ LV S (1st-order system) I – state, V S – input Q: How should we change the circuit in order to implement a 2nd-order system ?

  35. Example 2: RL Circuit V R + − + + I V S V L − − − V S + V R + V L = 0 Kirchhoff’s voltage law V R = RI Ohm’s law V L = L ˙ I Faraday’s law − V S + RI + L ˙ I = 0 I = − R LI + 1 ˙ LV S (1st-order system) I – state, V S – input Q: How should we change the circuit in order to implement a 2nd-order system ? A: Add a capacitor.

  36. Example 3: Pendulum θ ` θ T e external m g sin θ torque m g

  37. Example 3: Pendulum Newton’s 2nd law (rotational motion): θ ` θ T e external m g sin θ torque m g

  38. Example 3: Pendulum Newton’s 2nd law (rotational motion): θ ` = θ T J α T e ���� ���� ���� total moment angular torque of inertia acceleration external m g sin θ torque m g

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend