physics 2d lecture slides lecture 27 mar 8th
play

Physics 2D Lecture Slides Lecture 27: Mar 8th Vivek Sharma UCSD - PDF document

Confirmed: 2D Final Exam: Thursday 18 th March 11:30-2:30 PM WLH 2005 Course Review 14 th March 10am WLH 2005 (TBC) Physics 2D Lecture Slides Lecture 27: Mar 8th Vivek Sharma UCSD Physics Quiz 8 16 14 12 Frequency 10 8 6 4 2 0 0 1


  1. Confirmed: 2D Final Exam: Thursday 18 th March 11:30-2:30 PM WLH 2005 Course Review 14 th March 10am WLH 2005 (TBC) Physics 2D Lecture Slides Lecture 27: Mar 8th Vivek Sharma UCSD Physics

  2. Quiz 8 16 14 12 Frequency 10 8 6 4 2 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Grades QM in 3 Dimensions • Learn to extend S. Eq and its solutions from “toy” examples in 1-Dimension (x) → three orthogonal dimensions (r ≡ x,y,z) � ˆ = ˆ + ˆ + r ix jy kz • Then transform the systems – Particle in 1D rigid box � 3D rigid box – 1D Harmonic Oscillator � 3D z Harmonic Oscillator • Keep an eye on the number of different integers needed to specify system 1 � 3 (corresponding to 3 available y degrees of freedom x,y,z) x

  3. Quantum Mechanics In 3D: Particle in 3D Box z Extension of a Particle In a Box with rigid walls 1D → 3D ⇒ Box with Rigid Walls (U= ∞ ) in X,Y,Z dimensions z=L U(r)=0 for (0<x,y,z,<L) Ask same questions: • Location of particle in 3d Box • Momentum • Kinetic Energy, Total Energy • Expectation values in 3D y y=0 y=L To find the Wavefunction and various expectation values, we must first set up the appropriate TDSE & TISE x The Schrodinger Equation in 3 Dimensions: Cartesian Coordinates Time Dependent Schrodinger Eqn: ∂Ψ � 2 ( , , , ) x y z t − ∇ Ψ + Ψ = 2 � ( , , , ) ( , , ) ( , ) .....In 3D x y z t U x y z x t i ∂ 2 m t ∂ ∂ ∂ 2 2 2 ∇ = + +∂ 2 ∂ ∂ 2 2 2 x y z z ⎛ ∂ ⎞ ⎛ ∂ ⎞ ⎛ ∂ ⎞= � 2 � 2 2 � 2 2 � 2 2 − ∇ = − + − + − 2 ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ [ ] So K ∂ ∂ ∂ 2 2 2 2 ⎝ 2 ⎠ ⎝ 2 ⎠ ⎝ 2 ⎠ m m x m y m z y = [K ] + [K ] + [K ] x x x Ψ = Ψ [ ] ( , ) [ ] ( , ) is still the Energy Conservation Eq so H x t E x t x Stationary states are those for which all proba bilities are constant in time and are given by the solution of the TDSE in seperable form: =Ψ � � Ψ ψ ω -i t ( , , , ) ( , ) = (r)e x y z t r t This statement is simply an ext ension of what we derive d in case of 1D time-independent potential

  4. Particle in 3D Rigid Box : Separation of Orthogonal Spatial (x,y,z) Variables � 2 ∇ ψ + ψ = ψ 2 TISE in 3D: - ( , , ) x y z U x y z ( , , ) ( , , x y z ) E ( , x y , ) z 2m ψ = ψ ψ ψ x,y,z independent of each other , wr ite ( , , ) ( ) ( ) ( ) x y z x y z 1 2 3 ψ ψ ψ ψ and substitute in the master TISE, after dividing thruout by = ( ) ( ) ( ) x y z 1 2 3 ⇒ and n oting that U(r)=0 fo r (0<x,y,z,<L) ⎛ ∂ ψ ⎞ ⎛ ∂ ψ ⎞ ⎛ ∂ ψ ⎞ � 2 2 � 2 2 � 2 2 1 ( ) 1 ( ) 1 ( ) x y z − + − + − = = 1 2 ⎜ 3 ⎟ ⎜ ⎟ ⎜ ⎟ E Const ψ ∂ ψ ∂ ψ ∂ 2 2 2 ⎝ 2 ( ) ⎠ ⎝ 2 ( ) ⎠ ⎝ 2 ( ) ⎠ m x x m y y m z z 1 2 3 ⇒ This can only be true if each term is c onstant for all x,y,z ∂ ψ ∂ ψ ∂ ψ � 2 2 � 2 2 � 2 2 ( ) ( ) ( ) z x y − = ψ − = ψ − = ψ 1 2 3 ( ) ; ( ) ; ( ) E x E y E z ∂ 1 1 ∂ 2 2 ∂ 3 3 2 2 2 2 2 2 m x m y m z + + = With E E E E=Constan t (Total Energy of 3D system) 1 2 3 Each term looks like particle in 1D box (just a different dimension) ψ ∝ ψ ∝ ψ ∝ So wavefunctions must be like ( ) x sin k x , ( ) y s in k y , ( z ) s n i k z 1 1 2 2 3 3 Particle in 3D Rigid Box : Separation of Orthogonal Variables ψ ∝ ψ ∝ ψ ∝ Wavefunctions are like ( ) sin x , ( ) sin y , ( ) sin x k y k z k z 1 1 2 2 3 3 ψ ⇒ π = Continuity Conditions for and its fi rst spatial derivative s n k L i i i � � � Leads to usual Quantization of Linear Momentum p= k .....in 3D π π π ⎛ � ⎞ ⎛ � ⎞ ⎛ � ⎞ = = ⎜ = = ∞ ⎜ ⎟ ; ⎟ ; ⎜ ⎟ (n ,n ,n 1,2,3,.. ) p n p n p n x 1 y 2 z 3 1 2 3 ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ L L L = Note: by usual Uncertainty Principle argumen t neither of n ,n ,n 0! ( why ?) 1 2 3 π 2 � 2 1 + + = + + 2 2 2 2 2 2 Particle Energy E = K+U = K +0 = ( ) ( ) p p p n n n x y z 1 2 3 2 2 m 2 mL Energy is again quantized and brought to you by integers n ,n ,n (independent) 1 2 3 � ψ and (r)=A sin x sin y sin (A = Overall Normalization Co nstant) k k k z 1 2 3 � � E E - i t -i t Ψ ψ = � � (r,t)= (r) e [ sin x si n ys in ] e A k k k z 1 2 3

  5. Particle in 3D Box :Wave function Normalization Condition E E � � -i -i t t Ψ ψ = � � (r,t)= (r) e [ sin x sin y sin ] e A k k k z 1 2 3 � � E E i i t t Ψ ψ = * * � � (r,t)= (r) e [ sin x s in y sin ] e A k k k z 1 2 3 � � Ψ Ψ * 2 2 2 2 (r,t) (r,t)= [ sin x si n y sin ] A k k k z 1 2 3 ∫∫∫ ⇒ Normalization Co ndition : 1 = P(r)dx dyd z x,y, z ⎛ ⎞⎛ ⎞⎛ ⎞ L L L L L L ∫ ∫ ∫ = 2 2 2 2 2 ⎜ ⎟⎜ ⎟⎜ ⎟ 1 sin x dx sin y dy sin z dz = A k k k A ⎜ ⎟⎜ ⎟⎜ ⎟ 1 2 3 2 2 2 ⎝ ⎠⎝ ⎠⎝ ⎠ x=0 y= 0 z =0 3 3 ⎡ ⎤ ⎡ ⎤ � E 2 2 2 2 - i t ⇒ = ⎢ ⎥ Ψ � an d ( r,t)= [ s i n x s i n y sin ] e A k k k z ⎢ ⎥ 1 2 3 ⎣ ⎦ ⎣ ⎦ L L Particle in 3D Box : Energy Spectrum & Degeneracy π 2 � 2 = + + = ∞ ≠ 2 2 2 E ( ); n 1, 2,3... , 0 n n n n n ,n ,n 1 2 3 i i 2 2 1 2 3 mL π 2 � 2 3 = Ground State Energy E 111 2 2 mL π 2 � 2 6 ⇒ = = Next level 3 Ex cited states E = E E 211 121 112 2 2 mL ψ ψ ⇒ Different configurations of (r)= (x,y,z) have s ame energy d egeneracy z z=L y y=L x=L x

  6. Degenerate States π � 2 2 6 = = E = E E 211 121 112 2 2 mL Ground State E 111 E 121 E 112 E 211 ψ ψ z z y y x x Probability Density Functions for Particle in 3D Box Same Energy � Degenerate States Cant tell by measuring energy if particle is in 211, 121, 112 quantum State

  7. Source of Degeneracy: How to “Lift” Degeneracy • Degeneracy came from the threefold symmetry of a Energy CUBICAL Box (L x = L y = L z =L) • To Lift (remove) degeneracy � change each dimension such that CUBICAL box � Rectangular Box • (L x ≠ L y ≠ L z ) • Then ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ π π π 2 2 2 2 2 2 n n n = + + ⎜ ⎟ ⎜ 1 ⎟ 2 ⎜ 3 ⎟ E ⎜ ⎟ 2 2 2 ⎝ 2 ⎠ 2 ⎝ 2 ⎠ mL mL mL ⎝ ⎠ x y z The Hydrogen Atom In Its Full Quantum Mechanical Glory 1 1 ∝ = ⇒ ( ) M ore compli cated form of U than bo x U r + + r 2 2 2 x y z By example of particle in 3D box, need to use seperation of variables(x,y,z) to derive 3 in dependent d iffer ential. eq ns. r This approach will get very ugly since we have a "conjoined triplet" To simplify the situation, use appropriate variables → θ φ Independent Cartesian (x,y,z) Inde. Spherical Polar (r, , ) ∂ ∂ ∂ 2 2 2 ∇ = + + ∂ 2 Instead of writing Laplacian , write ∂ ∂ 2 2 2 x y z ∂ ∂ ∂ ∂ ∂ ⎛ ⎞ ⎛ ⎞ 2 1 1 1 ∇ + θ + 2 2 = s in ⎜ r ⎟ ⎜ ⎟ ∂ ∂ θ ∂ θ ∂ θ θ ∂ φ 2 ⎝ ⎠ 2 ⎝ ⎠ 2 2 2 r si n sin r r r r ψ ψ θ φ TISE for (x,y,z)= (r, , ) become s ∂ ∂ ψ θ φ ∂ ∂ ψ θ φ 2 ⎛ ⎞ ⎛ ⎞ kZe 1 (r, , ) 1 (r, , ) = ( ) + θ + U r 2 ⎜ ⎟ ⎜ sin ⎟ r r ∂ ∂ θ ∂ θ ∂ θ 2 ⎝ ⎠ 2 ⎝ ⎠ r r r r s in !!!! fun!!! ∂ ψ θ φ 2 1 (r, , ) 2m ψ θ φ + (E-U(r)) (r, , ) =0 θ ∂ φ 2 2 2 � 2 si n r

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend