phosphates for lithium ion ion
play

Phosphates for Lithium-ion ion Intro roduct ction Batteri ries: - PDF document

2/29/2008 Overvi view of Prese senta tati tion Phosphates for Lithium-ion ion Intro roduct ction Batteri ries: : Materials ials, , Synthesis is and Carbotherm rmal Reduct ction Future re Opport rtuniti ties Why y Phosphates?


  1. 2/29/2008 Overvi view of Prese senta tati tion Phosphates for Lithium-ion ion Intro roduct ction Batteri ries: : Materials ials, , Synthesis is and Carbotherm rmal Reduct ction Future re Opport rtuniti ties Why y Phosphates? s? Olivi vines Valenc ence e Techno hnology ogy Inc. Nasico cons Fluoro rophosp sphates, s, LiVPO 4 F and Na 3 V 2 (PO (PO 4 ) 2 F 3 Jerry y Barke ker Consu sulta ltants ts New Opport rtunities, s, New Cell Struct cture res Specialists cialists in Electr troch chemica ical and Solid-Sta tate te Chemistr istry y Conclusi sions www.je .jerryb ybarker.c .co.u .uk 1 2 Introduct ctio ion Carboth thermal l Reducti tion • The Carboth thermal l Reductio ction (CTR) R) method utilizes izes a high surfa face ce area carbon as a selective ctive reducing cing agent • Valence Technology has been working on Phosphate Active Materials since the early 1990’s. • 2C + O 2  2 CO = i increase se in volume and therefo fore entropy. y. Carbon is uniqu ique in that CO free energy y of formatio tion becomes s increasing ingly ly • Has built up a large portfolio of lithium and sodium active negative tive as the temperatu ture increase ses s – i.e. more stable le at high materials – phosphates, condensed phosphates, temperatu tures. s. Impli lica catio tions: s: Carbon can reduce ce any oxide provide vided a fluorophosphates and other polyanions (100+ + patents on active high enough temperature can be reach ched. . materials) Example: le: Na extractio ction: Na Na 2 CO CO 3 (liquid) + 2 C (solid) → 2 Na (vapor) + 3 CO (gas) • Valence needed a cost effective and scalable process for making these active materials at a commercial scale. Developed the • By design ign, , the CTR techniqu ique leave ves behind ind an embedded conductive tive Carbothermal Reduction (CTR) Method. netwo twork. k. • Carbon monoxide xide formed during ing the synth thesis sis both promote tes s furth ther • Today, Valence makes active materials using the CTR approach reduction and deposits carbon “nanoparticles” – up to Metric Tonne/day scale. • Net resu sult: lt: precu curso sor carbon is finely ly distr tribu ibute ted throughout t and on surfa face of final l product. t. 3 4 SEM M of Carbothermal l Material l Free Energy y or Ellin ingham Diagrams Top: Low affinit inity for oxygen gen – easy to reduc uce; Bottom om: High h affinit inity for oxygen en – diffic icult ult to reduc uce Determ rmin ines es the relat ativ ive e ease e of reduc ucing ing of a given en metallic llic oxide de to the metal l using ng carbon bon Determ rmin ines es the partial ial pressure ure of oxygen en that at is in equilibrium ilibrium with h a metal al at a given en temperat peratur ure But it tells ls us nothing hing about ut the kinet netic ics of these e reactio ions ns 5 6 1

  2. 2/29/2008 CTR: R: Schematic tic Represe senta tatio tion Iron Blast Furnace ce lithium salt Before reaction: Mixture of carbon, metal oxide, phosphate and lithium salts Metal Oxide Reaction Mechanisms: The CO produced promotes reduction while 3 Fe 2 O 3 + CO  2 Fe 3 O 4 + CO 2 Fe 2+/3+ Fe residual carbon remains as carbon Fe Fe 3 O 4 + CO  3 3 FeO FeO + CO 2 Fe Fe 2+ 2+ “nanoparticles” FeO + CO  Fe + CO 2 FeO Fe 0 Fe Metal carbon Oxide Intermediate Oxidation States: Lithium Metal Phosphate starts to form as the oxide is reduced 3+  Fe Fe Fe 3+ Fe 2+ 2+ 3+  Mn Mn 3+ Mn Mn 2+ 2+ 5+  V 3+ V 5+ 3+ Lithiated 4+ etc. Mo 6+ Mo 6+  Mo Mo 4+ Metal Net result: as the product is formed, Phosphate precursor carbon is distributed throughout and on surface of final product 7 Phosphate te Chemis istr try y Valenc ence e Studi died ed Phosph sphat ates es Nominal Specific c Material Inventor US Patent# Comments Voltage vs. Li Capacity y mAh/g LiFePO 4 3.45 140-160 J. Goodenough US 5910382 and others Olivine 5.0 Li 2 CoPO 4 F LiFe 1-x M x PO 4 3.45 140-160 J.Barker et al US 6884544 and others M = Mg, Ca, Zn Li 3 V 2 (PO 4 ) 3 3.6-4.7 197 J.Barker et al US 5871866 and others Nasicon 4.5 LiCoPO 4 LiVPO 4 F 4.2 155 J.Barker et al US 6387568 and others Triclinic Electrode Potential [V vs Li] LiVPO 4 .OH 4.1 158 J.Barker et al US 6777132 and others Triclinic 4.0 LiVPO 4 .OH LiVPO 4 F LiVP 2 O 7 4.1 116 --- --- Diphosphate LVP Li 2 MPO 4 F 4.7 143 J.Barker et al US 6964827 and others M = Co, Ni etc. 3.5 Na 2 MPO 4 F 4.7 122 J.Barker et al US 6872492 and others M = Co, Ni etc. LiVOPO 4 Phase A 3.0 Li 4 V 2 (SiO 4 )(PO 4 ) 2 3.6-4.7 260 J.Barker et al US 6136472 and others Silicophosphate LiVP 2 O 7 Li 3 V 2 (PO 4 ) 3 Na 3 V 2 (PO 4 ) 2 F 3 Li 3 V 1.5 Al 0.5 (PO 4 ) 3 3.6-4.7 203 J.Barker et al US 5871866 and others Nasicon 2.5 β -LiVOPO 4 4.0 159 J.Barker et al US 6645452 (CTR) Prepared by CTR LiFe 1-x Mg x PO 4 NaVPO 4 F 3.7 143 J.Barker et al US 6872492 and others Sodium Ion 2.0 Li 3 Ti 2 (PO 4 ) 3 Na 3 V 2 (PO 4 ) 2 F 3 3.7 192 J.Barker et al US 6872492 and others Sodium Ion Novel Phase A 3.8 ca . 150 J.Barker et al Pending Application Pending 1.5 0 50 100 150 200 Novel Phase B 3.9 ca. 140 J.Barker et al Pending Application Pending Material Specific Capacity [mAh/g] Novel Phase C 3.5 ca. 145 J.Barker et al Pending Application Pending 9 10 Phosphate Chemi mist stry y (cont..) Phosphate Safety y 5.0 Exotherm (J/g) LNO 893 J/g 4.5 LCO 570 Electrode Potential [V vs Li] 4.0 LMO 335 LiVPO 4 F LFP 124 J/g 3.5 100 200 300 400 Temperature (C) 3.0 Li 3 V 2 (PO 4 ) 3 1000 Na 3 V 2 (PO 4 ) 2 F 3 Heat Flow (J/gr) 800 2.5 LiFe 1-x Mg x PO 4 600 2.0 400 1.5 200 0 50 100 150 200 Material Specific Capacity [mAh/g] 0 LFP LVPF LVP LCP LMO LCO LNO 11 12 2

  3. 2/29/2008 Li// γ -LiV iV 2 O 5 Cycl cling ng of Graphi hite/ e// γ -Li LiV 2 O 5 Protot otypes ypes x in Li x V 2 O 5 150 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 4.5 500 Specific Discharge Capacity 125 400 4.0 300 3.5 Differential Capacity, dQ/dV [C/V] + ] 100 Electrode Potential [V vs. Li/Li 200 (mAhr/g) 3.0 Extraction 100 75 2.5 23C 0 2.0 60C 50 -100 Insertion 1.5 -200 25 1.0 -300 0.5 -400 0 0 -500 0 100 200 300 400 500 600 0 25 50 75 100 125 150 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Cycle # Cathode Specific Capacity [mAh/g] + ] Electrode Potential [V vs. Li/Li 13 14 LiFe 1-x Mg Mg x PO PO 4 Li//L /LiF iFe 1-x Mg Mg x PO PO 4 4 3-Dim imens ensional ional Framew ework ork Struc ructure ure 4.5 800 Framew ework rk compris prises es PO 4 600 4.0 tetrah rahedra edra and MO 6 octahed ahedra ra Differential Capacity, dQ/dV [C/V] 400 Electrode Potential [V vs. Li] 3.5 Fe and Mg occupy upy the same e 200 crystallograph allographic ic posit itio ion 3.0 0 Cont ntrolled rolled morphology hology and partic icle le 2.5 -200 size e give e rise to fast electro rode de kinet netic ics 2.0 -400 150 150-170 70 mAh/g g @ 3.45 5 V vs. Li 1.5 -600 Metri ric Tonne produc uctio ion 1.0 -800 0 20 40 60 80 100 120 140 160 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 Cathode Specific Capacity [mAh/g] Electrode Potential [V vs Li] 15 16 LiFeP ePO 4 : : ex ex-si situ u XRD study y of CTR LiFeP ePO 4 : : ex ex-si situ XRD study y of CTR LiH 2 PO PO 4 + + ½ ½ Fe Fe 2 O 3 + + ½ ½ C C  LiFePO 4 + H 2 O + ½ CO Filename Temp( o C) LiH 2 PO 4 Fe 2 O 3 Li 3 Fe 2 (PO 4 ) 3 LiFePO 4 Li 4 P 2 O 7 LiFeP 2 O 7 FePO 4 Fe 2 P 2 O 7 % % % % % % % % 3000 S3245 300 2.92 76.15 0.40 0.38 0.74 18.59 0 0 S3245_1 _1 400 0 43.74 3.06 1.24 0 51.959 0 0 900 S3245_2 _2 500 0 30.54 34.62 4.92 0 29.92 0 0 Intensity (A.U.) 2000 800 S3245_3 _3 600 0 3.32 1.50 91.65 0 0.84 0.46 2.24 700 600 S3245_4 _4 700 0 0.18 0.96 97.84 0 0.33 0.33 0.36 500 1000 400 S3245_5 _5 800 0 0 1.16 96.89 0 0.84 0.32 0.79 300 S3245_6 _6 900 0 0 1.32 96.73 0 0.73 0.53 0.69 Pre-mix 0 10 20 30 40 50 60 70 2 Theta. 17 18 3

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend