permanents and the jones polynomial
play

Permanents and the Jones polynomial Iain Moffatt 1 Martin Loebl 2 1 - PowerPoint PPT Presentation

Permanents and the Jones polynomial Iain Moffatt 1 Martin Loebl 2 1 University of South Alabama 2 Charles University Summer Combo in Vermont, 13 th July 2012 Permanents Determinant of an n n matrix A = [ a ij ] n det ( A ) := sgn (


  1. Permanents and the Jones polynomial Iain Moffatt 1 Martin Loebl 2 1 University of South Alabama 2 Charles University Summer Combo in Vermont, 13 th July 2012

  2. Permanents Determinant of an n × n matrix A = [ a ij ] n � � det ( A ) := sgn ( σ ) a i σ ( i ) σ ∈ S n i = 1     a b c  = aei − afh + dch − dbi + gbf − gce det d e f    g h i Permanent of an n × n matrix A = [ a ij ] n � � per ( A ) := a i σ ( i ) σ ∈ S n i = 1     a b c  = aei + afh + dch + dbi + gbf + gce per d e f    g h i

  3. Permanents Determinant of an n × n matrix A = [ a ij ] n � � det ( A ) := sgn ( σ ) a i σ ( i ) σ ∈ S n i = 1     a b c  = aei − afh + dch − dbi + gbf − gce det d e f    g h i Permanent of an n × n matrix A = [ a ij ] n � � per ( A ) := a i σ ( i ) σ ∈ S n i = 1     a b c  = aei + afh + dch + dbi + gbf + gce per d e f    g h i

  4. Permanents: complexity P solvable in polynomial time. e.g. Given a cycle of G , is it a Hamiltonian? NP solution can be verified in polynomial time. e.g. does a graph have a Hamiltonian cycle? #P number of solutions to a problem in NP . e.g. how many Hamiltonian cycles does a graph have? Facts Computing det ( A ) is P . Computing per ( A ) is #P . A fun fact MacMahon Master Theorem gives per ( A ) = [ x 1 ]( det ( I − XA )) − 1 , where X = diag ( x 1 · · · x n ) , and [ x 1 ] is the coefficient of x 1 · · · x n . Q: Does it follow that P = # P ?

  5. Permanents: combinatorial interpretation Definitions G a directed graph (digraph), i.e. edges are directed. A = [ a ij ] is the adjacency matrix of G if a ij = # edges from i to j . A cycle cover of G is a collection of vertex-disjoint directed cycles that covers all vertices. 1 4   0 1 0 0 0 0 1 2   A =   0 0 1 1   1 0 0 0 2 3 digraph adjacency matrix cycle covers Theorem per ( A ) = #cycle covers.

  6. Permanents: combinatorial interpretation G a weighted digraph, i.e. every edge was a weight. A = weighted adjacency matrix, i.e. a ij = weight of i to j edges. Every cycle cover has a weight. a a d c a a 1 a 4 f   0 a 0 0 d b aadf aabc a c 0 0 b d + e a   A = e   0 0 f c f   a a 0 0 0 2 b 3 e f aaef per ( A ) = a 2 bc + a 2 df + a 2 ef Theorem per ( A ) = generating function for cycle covers w.r.t. weights. = � � e ∈ C w ( e ) cyc . cov . C

  7. Permanents: combinatorial interpretation G a weighted digraph, i.e. every edge was a weight. A = weighted adjacency matrix, i.e. a ij = weight of i to j edges. Every cycle cover has a weight. a a d c a a 1 a 4 f   0 a 0 0 d b aadf aabc a c 0 0 b d + e a   A = e   0 0 f c f   a a 0 0 0 2 b 3 e f aaef per ( A ) = a 2 bc + a 2 df + a 2 ef Theorem per ( A ) = generating function for cycle covers w.r.t. weights. = � � e ∈ C w ( e ) cyc . cov . C

  8. Knots and links A knot is a circle, S 1 , sitting in 3-space R 3 . A link is a number of disjoint circles in 3-space R 3 . Knots and links are considered up to ambient isotopy. You can “move them round in space, but you can’t cut or glue them”. = = = =

  9. Knots and links The fundamental problem in knot theory is to determine whether or not two links are isotopic. ? ? ? = = = To do this we need a way to tell knots and links apart. Definition links A knot invariant is a function F : isotopy → S such that F ( L ) � = F ( L ′ ) = ⇒ L � = L ′

  10. The Jones polynomial The Skein formulation of the Jones polynomial The Jones polynomial is knot invariant defined by the relations � � � � � � q 2 J − q − 2 J = ( q − q − 1 ) J , ) = ( q + q − 1 ) k . J ( · · ·   � � � � = q − 4 J + q − 2 ( q − q − 1 ) J J   � � � � = q − 4 J + q − 2 ( q − q − 1 ) J = [ q − 4 ( q + q − 1 ) 2 ] + [ q − 2 ( q − q − 1 )( q + q − 1 )] = q − 6 + q − 4 + q − 2 + 1

  11. The Jones polynomial The Skein formulation of the Jones polynomial The Jones polynomial is knot invariant defined by the relations � � � � � � q 2 J − q − 2 J = ( q − q − 1 ) J , ) = ( q + q − 1 ) k . J ( · · · � � = q − 6 + q − 4 + q − 2 + 1 J   � � � � = q − 4 J + q − 2 ( q − q − 1 ) J J   � � � � = q − 4 J + q − 2 ( q − q − 1 ) J = q − 4 ( q + q − 1 ) + q − 2 ( q − q − 1 )( q − 6 + q − 4 + q − 2 + 1 ) = q − 1 + 3 q − 3 + 3 q − 5 + 2 q − 7 + q − 9

  12. � The Jones polynomial � � = q − 1 + 3 q − 3 + 3 q − 5 + 2 q − 7 + q − 9 J � � = ⇒ � = = q 1 + 3 q 3 + 3 q 5 + 2 q 7 + q 9 J The Jones polynomial does not distinguish all links:   � � J = J  , but � =    J ( L ) = J ( · · · ) = ⇒ L = · · · ? Open question: J ( L ) = J ( ) = ⇒ L =

  13. Recap � � Permanents & cycle covers: per ( A ) = w ( e ) cyc . cov . C e ∈ C a a d c a a 1 a 4 f   0 a 0 0 d b aadf aabc a c 0 0 b d + e a   A = e   0 0 f c   f a a 0 0 0 2 b 3 e f aaef per ( A ) = a 2 bc + a 2 df + a 2 ef The Jones polynomial: a knot invariant      � = J  = J ⇒ � =  

  14. A permanent formula for the Jones polynomial Theorem (M. & Loebl) The Jones polynomial is a permanent: J ( L ) = q rot ( L ) − 2 ω ( L ) per ( M L ) , rot ( L ) =rotation number of link. ω ( L ) = (# crossings) - (# crossings) Approach Construct a digraph from a link. Express J ( L ) in terms of cycle covers of a digraph. Use fact that permanents enumerate cycle covers. Expositional simplification: for this talk, all crossings .

  15. Step 1: connection with statistical mechanics Ice-type models are used in statistical physics to study the energy levels of crystal lattices with hydrogen bonds such as ice!. Theorem: Jones polynomial is an ice type model (Turaev, Jones) J ( L ) = q − 2 ω ( L ) � q rot 0 ( s ) − rot 1 ( s ) � R v ( s ) s v � � � � ω ( L ) = # crossings − # crossings The sum is over { 0 , 1 } -labelings of the arcs in a link rot i travel round the i -labelled curves, count number of revolutions. R v ( s ) look at each crossing: col. q − q − 1 q 1 1 0 q q − 1 q − q − 1 q − 1 0 1 1

  16. An example vertex weights R v ( s ) Jones polynomial q − q − 1 q 1 sum over {0,1}-colourings of arcs between crossings 1 0 q rot 0 ( s ) 1-1=0 1 -1 1 -1 0 rot 1 ( s ) 0 -1 1 -1 1 1-1=0 q rot 0 − rot 1 q 0 q 2 q − 2 q 2 q 0 q 0 � R v ( s ) q 2 ( q − q − 1 ) 2 q 2 1 1 0 q − 2 ω ( L ) q − 4 q − 4 q − 4 q − 4 q − 4 q − 4 � � = q − 2 + q − 2 ( q − q − 1 ) 2 + q − 6 + q − 2 + 0 + q − 2 J = q − 6 + q − 4 + q − 2 + 1

  17. An example vertex weights R v ( s ) Jones polynomial q − q − 1 q 1 rotation number of 0-coloured components 1 0 q rot 0 ( s ) 1-1=0 1 -1 1 -1 0 rot 1 ( s ) 0 -1 1 -1 1 1-1=0 q rot 0 − rot 1 q 0 q 2 q − 2 q 2 q 0 q 0 � R v ( s ) q 2 ( q − q − 1 ) 2 q 2 1 1 0 q − 2 ω ( L ) q − 4 q − 4 q − 4 q − 4 q − 4 q − 4 � � = q − 2 + q − 2 ( q − q − 1 ) 2 + q − 6 + q − 2 + 0 + q − 2 J = q − 6 + q − 4 + q − 2 + 1

  18. An example vertex weights R v ( s ) Jones polynomial q − q − 1 q 1 rotation number of 1-coloured components 1 0 q rot 0 ( s ) 1-1=0 1 -1 1 -1 0 rot 1 ( s ) 0 -1 1 -1 1 1-1=0 q rot 0 − rot 1 q 0 q 2 q − 2 q 2 q 0 q 0 � R v ( s ) q 2 ( q − q − 1 ) 2 q 2 1 1 0 q − 2 ω ( L ) q − 4 q − 4 q − 4 q − 4 q − 4 q − 4 � � = q − 2 + q − 2 ( q − q − 1 ) 2 + q − 6 + q − 2 + 0 + q − 2 J = q − 6 + q − 4 + q − 2 + 1

  19. An example vertex weights R v ( s ) Jones polynomial q − q − 1 q 1 1 0 q rot 0 ( s ) 1-1=0 1 -1 1 -1 0 rot 1 ( s ) 0 -1 1 -1 1 1-1=0 q rot 0 − rot 1 q 0 q 2 q − 2 q 2 q 0 q 0 � R v ( s ) q 2 ( q − q − 1 ) 2 q 2 1 1 0 q − 2 ω ( L ) q − 4 q − 4 q − 4 q − 4 q − 4 q − 4 � � = q − 2 + q − 2 ( q − q − 1 ) 2 + q − 6 + q − 2 + 0 + q − 2 J = q − 6 + q − 4 + q − 2 + 1

  20. An example vertex weights R v ( s ) Jones polynomial q − q − 1 q 1 product of vertex weights read from table 1 0 q rot 0 ( s ) 1-1=0 1 -1 1 -1 0 rot 1 ( s ) 0 -1 1 -1 1 1-1=0 q rot 0 − rot 1 q 0 q 2 q − 2 q 2 q 0 q 0 � R v ( s ) q 2 ( q − q − 1 ) 2 q 2 1 1 0 q − 2 ω ( L ) q − 4 q − 4 q − 4 q − 4 q − 4 q − 4 � � = q − 2 + q − 2 ( q − q − 1 ) 2 + q − 6 + q − 2 + 0 + q − 2 J = q − 6 + q − 4 + q − 2 + 1

  21. An example vertex weights R v ( s ) Jones polynomial q − q − 1 q 1 # - # 1 0 q rot 0 ( s ) 1-1=0 1 -1 1 -1 0 rot 1 ( s ) 0 -1 1 -1 1 1-1=0 q rot 0 − rot 1 q 0 q 2 q − 2 q 2 q 0 q 0 � R v ( s ) q 2 ( q − q − 1 ) 2 q 2 1 1 0 q − 2 ω ( L ) q − 4 q − 4 q − 4 q − 4 q − 4 q − 4 � � = q − 2 + q − 2 ( q − q − 1 ) 2 + q − 6 + q − 2 + 0 + q − 2 J = q − 6 + q − 4 + q − 2 + 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend