pca on manifolds application to spaces of landmarks
play

PCA on manifolds: application to spaces of landmarks Dr Sergey - PowerPoint PPT Presentation

PCA on manifolds: application to spaces of landmarks Dr Sergey Kushnarev Singapore University of Technology and Design Infinite-dimensional Riemannian geometry with applications to image matching and shape analysis. ESI, Vienna January 16,


  1. PCA on manifolds: application to spaces of landmarks Dr Sergey Kushnarev Singapore University of Technology and Design Infinite-dimensional Riemannian geometry with applications to image matching and shape analysis. ESI, Vienna January 16, 2015

  2. Principal Component Analysis Goal of PCA: find the sequence of linear subspaces V k that best represent the variability of the data.

  3. Principal Component Analysis Goal of PCA: find the sequence of linear subspaces V k that best represent the variability of the data. x 1 , . . . , x n ∈ R d . V k = span { v 1 , v 2 , ..., v k } . n � ( v · x i ) 2 , ◮ v 1 = arg max � v � =1 i =1 n ( v 1 · x i ) 2 + ( v · x i ) 2 , � ◮ v 2 = arg max � v � =1 , v ⊥ V 1 i =1 ◮ . . . n k − 1 ( v j · x i ) 2 + ( v · x i ) 2 . � � ◮ v k = arg max � v � =1 , v ⊥ V k − 1 i =1 j =1

  4. Principal Component Analysis Goal of PCA: find the sequence of linear subspaces V k that best represent the variability of the data. x 1 , . . . , x n ∈ R d . V k = span { v 1 , v 2 , ..., v k } . n � ( v · x i ) 2 , ◮ v 1 = arg max � v � =1 i =1 n ( v 1 · x i ) 2 + ( v · x i ) 2 , � ◮ v 2 = arg max � v � =1 , v ⊥ V 1 i =1 ◮ . . . n k − 1 ( v j · x i ) 2 + ( v · x i ) 2 . � � ◮ v k = arg max � v � =1 , v ⊥ V k − 1 i =1 j =1

  5. Principal Component Analysis Goal of PCA: find the sequence of linear subspaces V k that best represent the variability of the data. x 1 , . . . , x n ∈ R d . V k = span { v 1 , v 2 , ..., v k } . n � ( v · x i ) 2 , ◮ v 1 = arg max � v � =1 i =1 n ( v 1 · x i ) 2 + ( v · x i ) 2 , � ◮ v 2 = arg max � v � =1 , v ⊥ V 1 i =1 ◮ . . . n k − 1 ( v j · x i ) 2 + ( v · x i ) 2 . � � ◮ v k = arg max � v � =1 , v ⊥ V k − 1 i =1 j =1

  6. Principal Component Analysis Goal of PCA: find the sequence of linear subspaces V k that best represent the variability of the data. x 1 , . . . , x n ∈ R d . V k = span { v 1 , v 2 , ..., v k } . n � ( v · x i ) 2 , ◮ v 1 = arg max � v � =1 i =1 n ( v 1 · x i ) 2 + ( v · x i ) 2 , � ◮ v 2 = arg max � v � =1 , v ⊥ V 1 i =1 ◮ . . . n k − 1 ( v j · x i ) 2 + ( v · x i ) 2 . � � ◮ v k = arg max � v � =1 , v ⊥ V k − 1 i =1 j =1

  7. Principal Component Analysis Goal of PCA: find the sequence of linear subspaces V k that best represent the variability of the data. x 1 , . . . , x n ∈ R d . V k = span { v 1 , v 2 , ..., v k } . n � ( v · x i ) 2 , ◮ v 1 = arg max � v � =1 i =1 n ( v 1 · x i ) 2 + ( v · x i ) 2 , � ◮ v 2 = arg max � v � =1 , v ⊥ V 1 i =1 ◮ . . . n k − 1 ( v j · x i ) 2 + ( v · x i ) 2 . � � ◮ v k = arg max � v � =1 , v ⊥ V k − 1 i =1 j =1

  8. Principal Component Analysis Maximizing projected variance: n k − 1 ( v j · x i ) 2 + ( v · x i ) 2 � � v k = arg max � v � =1 , v ⊥ V k − 1 i =1 j =1 Or, equivalently , minimizing residuals: n k − 1 � x i − ( v j · x i ) v j � 2 + � x i − ( v · x i ) v � 2 � � v k = arg min � v � =1 , v ⊥ V k − 1 i =1 j =1

  9. PCA on a manifold? M x k

  10. Tangent PCA Karcher mean N � d ( x k , y ) 2 µ = arg min y ∈ M k =1 M x k µ

  11. Tangent PCA Karcher mean N � d ( x k , y ) 2 µ = arg min y ∈ M k =1 M x k v k µ T µ M

  12. Tangent PCA Shape space linearization via v k ∈ T µ M M x k v k µ T µ M Tangent PCA: finding the sequence of linear subspaces V k ∈ T µ M that best represent the variability of the data.

  13. Tangent PCA Shape space linearization via v k ∈ T µ M M x k v k µ T µ M Tangent PCA: finding the sequence of linear subspaces V k ∈ T µ M that best represent the variability of the data.

  14. Problems with linearization dist ( s 1 , s 2 ) 2 = dist (exp µ ( v 1 ) , exp µ ( v 2 )) 2 = � v 1 − v 2 � 2 − 1 3 K ( v 1 , v 2 ) + o ( � v � 4 ) . If K ( v 1 , v 2 ) < 0, then dist (exp µ ( v 1 ) , exp µ ( v 2 )) > � v 1 − v 2 � If K ( v 1 , v 2 ) > 0, then dist (exp µ ( v 1 ) , exp µ ( v 2 )) < � v 1 − v 2 � K = 0 K > 0 K < 0 s 2 s 2 v 2 v 2 s 2 v 2 µ µ µ v 1 v 1 v 1 s 1 s 1 s 1

  15. PCA on a manifold, effects of curvature y 2 − 1 ds 2 = (1 + y 2 )( dx 2 + dy 2 ) , M = R 2 , K = ( y 2 + 1) 3 . Points uniformly distributed in T 0 M .

  16. PCA on a manifold, effects of curvature y 2 − 1 ds 2 = (1 + y 2 )( dx 2 + dy 2 ) , K = ( y 2 + 1) 3 . Points uniformly distributed in M .

  17. Geodesic PCA (Fletcher) Geodesic PCA: finding the sequence of geodesic subspaces S k ∈ M that best represent the variability of the data. M x k µ S 2 S 1

  18. Geodesic PCA (Fletcher) Projection π : M → H . d ( x , y ) 2 . π H ( x ) = arg min y ∈ H x Log x y Log µ x H Log µ y π ( x ) y µ y

  19. Geodesic PCA (Fletcher) Geodesic subspace S = Exp µ V , V ⊂ T µ M . Projection π : M → H . d ( x , y ) 2 . π H ( x ) = arg min y ∈ H n � d ( µ, π S v ( x i )) 2 , ◮ v 1 = arg max � v � =1 i =1 n d ( µ, π S v 1 ( x i )) 2 + ( v · x i ) 2 , � ◮ v 2 = arg max � v � =1 , v ⊥ V 1 i =1 ◮ . . . n k − 1 d ( µ, π S vj ( x i )) 2 + ( v · x i ) 2 . � � ◮ v k = arg max � v � =1 , v ⊥ V k − 1 i =1 j =1

  20. Geodesic PCA (Fletcher) Geodesic subspace S = Exp µ V , V ⊂ T µ M . Projection π : M → H . d ( x , y ) 2 . π H ( x ) = arg min y ∈ H n � d ( µ, π S v ( x i )) 2 , ◮ v 1 = arg max � v � =1 i =1 n d ( µ, π S v 1 ( x i )) 2 + ( v · x i ) 2 , � ◮ v 2 = arg max � v � =1 , v ⊥ V 1 i =1 ◮ . . . n k − 1 d ( µ, π S vj ( x i )) 2 + ( v · x i ) 2 . � � ◮ v k = arg max � v � =1 , v ⊥ V k − 1 i =1 j =1

  21. Geodesic PCA (Fletcher) Geodesic subspace S = Exp µ V , V ⊂ T µ M . Projection π : M → H . d ( x , y ) 2 . π H ( x ) = arg min y ∈ H n � d ( µ, π S v ( x i )) 2 , ◮ v 1 = arg max � v � =1 i =1 n d ( µ, π S v 1 ( x i )) 2 + ( v · x i ) 2 , � ◮ v 2 = arg max � v � =1 , v ⊥ V 1 i =1 ◮ . . . n k − 1 d ( µ, π S vj ( x i )) 2 + ( v · x i ) 2 . � � ◮ v k = arg max � v � =1 , v ⊥ V k − 1 i =1 j =1

  22. Geodesic PCA (Fletcher) Geodesic subspace S = Exp µ V , V ⊂ T µ M . Projection π : M → H . d ( x , y ) 2 . π H ( x ) = arg min y ∈ H n � d ( µ, π S v ( x i )) 2 , ◮ v 1 = arg max � v � =1 i =1 n d ( µ, π S v 1 ( x i )) 2 + ( v · x i ) 2 , � ◮ v 2 = arg max � v � =1 , v ⊥ V 1 i =1 ◮ . . . n k − 1 d ( µ, π S vj ( x i )) 2 + ( v · x i ) 2 . � � ◮ v k = arg max � v � =1 , v ⊥ V k − 1 i =1 j =1

  23. Geodesic PCA (Fletcher) Geodesic subspace S = Exp µ V , V ⊂ T µ M . Projection π : M → H . d ( x , y ) 2 . π H ( x ) = arg min y ∈ H n � d ( µ, π S v ( x i )) 2 , ◮ v 1 = arg max � v � =1 i =1 n d ( µ, π S v 1 ( x i )) 2 + ( v · x i ) 2 , � ◮ v 2 = arg max � v � =1 , v ⊥ V 1 i =1 ◮ . . . n k − 1 d ( µ, π S vj ( x i )) 2 + ( v · x i ) 2 . � � ◮ v k = arg max � v � =1 , v ⊥ V k − 1 i =1 j =1

  24. Variance vs residuals Maximizing variance: N v i = � d ( µ, π S v ( x j )) 2 , arg max � v � =1 , v ∈ V ⊥ j =1 i − 1 Minimizing residuals N v i = � d ( x j , π S v ( x j )) 2 , arg min � v � =1 , v ∈ V ⊥ j =1 i − 1

  25. What the PCA?! ◮ Tangent PCA (linearization) ◮ Geodesic PCA (computationally intensive) ◮ Let’s try: Curvature PCA (quadratic PCA?)

  26. What the PCA?! ◮ Tangent PCA (linearization) ◮ Geodesic PCA (computationally intensive) ◮ Let’s try: Curvature PCA (quadratic PCA?)

  27. What the PCA?! ◮ Tangent PCA (linearization) ◮ Geodesic PCA (computationally intensive) ◮ Let’s try: Curvature PCA (quadratic PCA?)

  28. Dealing with curvature √ Sphere of radius 1 / K (sectional curvature is K ). √ √ cos β = tan Kc sin β = sin Kb √ , √ tan sin Ka Ka √ Note: if K < 0, cos β = tanh i Kc √ , which is the same as above, tanh i Ka since tanh ix = i tan x .

  29. Dealing with curvature √ Sphere of radius 1 / K (sectional curvature is K ). √ √ cos β = tan Kc sin β = sin Kb √ , √ tan sin Ka Ka √ Note: if K < 0, cos β = tanh i Kc √ , which is the same as above, tanh i Ka since tanh ix = i tan x .

  30. Dealing with curvature √ 1 � � Projected variance c = √ arctan tan( Ka ) cos β , K √ 1 � � Residual b = √ arcsin sin( Ka ) sin β K

  31. Dealing with curvature Looking infinitesimally c 2 = a 2 cos 2 β + K 6 a 4 sin 2 (2 β ) + o ( K ) Projected variance b 2 = a 2 sin 2 β − K 3 a 4 sin 4 β + o ( K ) Residual

  32. For vectors { a 1 , a 2 , . . . , a n } ∈ T p M representing the data { x 1 , x 2 , . . . , x n } , we seek direction v , s.t. the projected variance in maximized : n � � a k � 2 cos 2 β + K ( a k , v ) � � a k � 4 sin 2 (2 β ) � v 1 = arg max , 6 v , � v � =1 k =1 where cos β k = � a k , v � / � a k �� v � . Or, not equivalently , the residuals are minimized : n � � � a k � 2 sin 2 β − K ( a k , v ) � a k � 4 sin 4 β � v 1 = arg min 3 v , � v � =1 k =1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend