paul glover emilie walker
play

Paul Glover & Emilie Walker Universit Laval, Qubec, Canada , Q - PowerPoint PPT Presentation

Paul Glover & Emilie Walker Universit Laval, Qubec, Canada , Q , Matthew Jackson Imperial College, London, UK The classical Helmholtz Smoluchowski equation relates the streaming potential coupling coefficient (SPCC) to li ffi


  1. Paul Glover & Emilie Walker Université Laval, Québec, Canada , Q , Matthew Jackson Imperial College, London, UK

  2. � The classical Helmholtz ‐ Smoluchowski equation relates the streaming potential coupling coefficient (SPCC) to li ffi i t (SPCC) t ε ζ f = • zeta potential C ( ( ) ) s η σ + Σ Λ 2 f f s • Pore fluid dielectric permittivity Pore fluid dielectric permittivity • Pore fluid conductivity Pore fluid viscosity • � Developped for capillary tubes � Commonly applied to rocks � However, never been validated for rocks (no measure of zeta potential) � H b lid t d f k ( f t t ti l) � Never even been a theoretical model applied to real rocks � DESPITE most of the theoretical tools being available since 1998 g 5. Individual 6. Conclusions 2. Database 3. Theory 4. Plenary 1. Introduction 2/18

  3. � In this presentation: Development of the required D l t f th i d theoretical tools Compilation of a SPCC dataset for p rocks Compilation of a zeta potential dataset for rocks f k Modelling SPCC of rocks as a function of salinity of salinity Modelling ζ of rocks as a function of salinity 5. Individual 6. Conclusions 2. Database 3. Theory 4. Plenary 1. Introduction 3/18

  4. SPCC vs. Pore fluid salinity Silica, glass, Silica, glass, sand and sandstone 11 sources Acknowledgments to Jaafar (2009) 5. Individual 6. Conclusions 2. Database 3. Theory 4. Plenary 1. Introduction 4/18

  5. Zeta potential vs. Pore fluid salinity salinity Silica, glass, sand and sandstone 7 so rces 7 sources Acknowledgments to Jaafar (2009) 5. Individual 6. Conclusions 2. Database 3. Theory 4. Plenary 1. Introduction 5/18

  6. The method is as follows: 1. Calculate the pore fluid conductivity (salinity and temperature) ⎛ ⎞ ) ( ) + ( d d T σ = + + − ⎜ 3 2 2 ⎟ 4 5 T C , d d T d T C C ⎜ ⎟ f f 1 2 3 f + f 1 d C ⎝ ⎠ 6 f Sen and Goode (1992) Sen and Goode (1992) 2. Calculate the pore fluid relative permittivity (salinity and temperature) ( ( ) ) ( ( ) ) ε ε = ε ε + + + + + + + + + + + + 2 3 2 3 T C T C , a a a T a T a T a T a T a T c C c C c C c C c C c C f f o 0 1 2 3 1 f 2 f 3 f Olhoeft (1980) 3 3. Calculate the pore fluid viscosity (salinity and temperature) Calculate the pore fluid viscosity (salinity and temperature) ( ) ( ) ( ) ( ) η = + α + α + α + α m m T C , e e exp T e exp C e exp T C f f 1 2 1 3 2 f 4 3 4 f Phillips et al. (1978) 5. Individual 6. Conclusions 2. Database 3. Theory 4. Plenary 1. Introduction 6/18

  7. 4. Define the physical chemistry of the double layer K − ( ) + > ⇔ > o - SiOH SiO + H K + + M e > ⇔ > o o SiOH + Me SiOMe + H 5. 5 Calculate or set the pore fluid pH (SiO 2 ‐ H 2 O ‐ CO 2 ) Calculate or set the pore fluid pH (SiO ‐ H O ‐ CO ) ( ) ( ) − − − + − = 3 2 C C C C K K C 2 K K 0 + + + a b w 1 1 2 H H H − − − − = × + × − × + × 16 16 17 2 19 3 K 6.9978 10 5.0178 10 T 2.4434 10 T 7.1948 10 T w Lide (2009); Revil et al. (1999) 6 6. Calculate the Debye screening length and shear plane distance Calculate the Debye screening length and shear plane distance ε ε n = ∑ k T 1 χ = o r b 2 f and χ ζ = 2.4×10 -10 m I Z C d f i i Ν Ν 2 ζ 2 2 i 2000 2000 e I e I f f 5. Individual 6. Conclusions 2. Database 3. Theory 4. Plenary 1. Introduction 7/18

  8. 7. Calculate the Stern plane potential ( ( ) ) ⎛ ⎛ ⎞ ⎞ − × ε ε Ν + ⎡ ⎡ − ⎤ ⎤ 3 3 10 pH pH + + + pH H 8 10 8 10 k T k 10 K C C C C C 10 ⎜ ⎟ 2 k T r o b Me f ⎢ ⎥ a b f ϕ = b ln ⎜ ⎟ d Γ ⎢ ⎥ o 3 ⎜ ⎟ e I 2 e K ⎣ ⎦ − s f ⎝ ⎠ Revil and Glover (1997; 1998) 8. Calculate the zeta potential ( ( ) ) ζ ζ = ϕ ϕ − χ χ χ χ exp exp ζ ζ d d d d Revil and Glover (1997; 1998) 5. Individual 6. Conclusions 2. Database 3. Theory 4. Plenary 1. Introduction 8/18

  9. Σ = Σ + Σ + Σ EDL Prot Stern 9. Calculate the surface conductance s s s s β Γ o e K C s s Me f Σ Σ = ⎛ Stern s ⎞ ( ) 2 3 ⎛ ⎞ − − × ε ε Ν + ⎡ − ⎤ 3 pH ⎜ + + + ⎟ pH 8 10 k T 10 K C ⎜ C C C 10 ⎟ − r o b Me f ⎢ a b f ⎥ pH + + ⎜ ⎟ 10 K K C − ⎜ ⎟ Me f Γ o ⎢ ⎥ ⎜ ⎜ ⎟ ⎟ I 2 e K ⎣ ⎦ − ⎜ ⎟ f s ⎝ ⎝ ⎠ ⎠ ⎝ ⎝ ⎠ ⎠ ⎛⎡ ⎤ ⎛ − ⎞ 1 3 ⎛ ⎞ − ⎛ ⎞ + pH ⎜⎢ ( ) ⎥ ⎜ 10 C K ⎟ − ⎜ ⎟ ⎜ ⎟ Σ = + f Me − + EDL pH R ⎜⎢ B C B 10 S 1 ⎜ ⎟ ⎥ + + ⎜ ⎟ s f ⎜ ⎟ Na H Γ o ⎜ ⎜ ⎟ ⎟ 2 e K ⎜ ⎜ ⎝ ⎝ ⎠ ⎠ ⎢ ⎢ ⎝ ⎝ − ⎠ ⎠ ⎥ ⎥ s s ⎝ ⎝ ⎠ ⎠ ⎣ ⎣ ⎦ ⎦ ⎝ ⎝ ⎞ ⎡ ⎤ + ⎛ ⎞ 1 3 ⎛ ⎞ ⎛ − ⎞ ( ( ) ) + pH ⎟ ⎢ ⎜ ⎟ ⎥ 10 C K − ⎜ ⎟ pH pK ⎜ f Me ⎟ + − B C B 10 S 1 ⎟ f ⎢ ⎥ ⎜ ⎟ − − ⎜ ⎜ ⎟ ⎟ f ⎜ ⎜ ⎟ ⎟ Cl OH Γ Γ o ⎜ ⎜ ⎟ ⎟ ⎟ ⎟ 2 2 e e K − K ⎝ ⎝ ⎠ ⎠ ⎢ ⎢ ⎥ ⎥ ⎝ ⎝ ⎠ ⎠ s ⎝ ⎠ ⎣ ⎦⎠ − × 3 ε ε Ν ( ( ) ) 2 10 k T = r o b − − − R = × 3 ε ε Ν + pH + pH pK S 8 10 k T C 10 10 − w C + + pH r o b f C 10 10 f f Revil and Glover (1997; 1998) 5. Individual 6. Conclusions 2. Database 3. Theory 4. Plenary 1. Introduction 9/18

  10. 10. Calculate the SPCC ε ζ Δ d V = = f ( ) C Δ η σ + Σ s P d 4 m F f f f f s Glover and Déry (in press) � Fundamental constants ( k b and N A etc.). � Environmental conditions ( T etc.). � Fluid parameters (salinity, pH, pK w , pK 1 and pK 2 etc.). � Rock microstructure parameters ( F, m, φ , d etc.). � Rock-fluid interface parameters, i.e., the electro-chemical parameters associated with surface adsorption reactions ( pK me , pK – etc.). 5. Individual 6. Conclusions 2. Database 3. Theory 4. Plenary 1. Introduction 10/18

  11. Value or Parameter Symbol Units Reference range Model variables o C Temperature T 25 Experimental condition 10 ‐ 5 – 3.98 Pore fluid salinity C f mol/L Varied between limits Pore fluid pH pH 6 ‐ 8 ( ‐ ) Varied between limits F Fundamental constants d t l t t ε o 8.854 × 10 ‐ 12 Dielectric permittivity in vacuo F/m Lide (2009) 1.381 × 10 ‐ 23 Boltzmann’s constant k b J/K Lide (2009) 1.602 × 10 19 1 602 × 10 ‐ 19 Charge on an electron Charge on an electron e e C C Lide (2009) Lide (2009) 6.02 × 10 +23 Avagadro’s number N /mol Lide (2009) Fluid parameters Added acid concentration Added acid concentration C a C a variable variable mol/L Calculated from pH mol/L Calculated from pH Added base concentration C b variable mol/L Calculated from pH β s 5 × 10 ‐ 9 m 2 /s/V Revil and Glover (1997) Surface mobility Reaction constant carbonisation pK 1 7.53 ( ‐ ) Wu et al. (1991) 1 Reaction constant dehydrogenisation pK 2 10.3 ( ‐ ) Wu et al. (1991) 5. Individual 6. Conclusions 2. Database 3. Theory 4. Plenary 1. Introduction 11/18

  12. Symbol Value or Parameter Units Reference range Rock parameters 2 × 10 ‐ 4 Grain size (diameter) d m St Bee's SST (Jaafar et al., 2009) = − φ m log F log Cementation exponent m 1.86 ( ‐ ) Calculated Formation factor F 19.80 ( ‐ ) St Bee's SST (Jaafar et al., 2009) φ Porosity 0.19 ( ) ( ‐ ) St Bee's SST (Jaafar et al., 2009) ( f ) Rock/fluid interface parameters sites/m 2 Adjusted to fit data Γ s o 1 × 10 +19 Surface site density Adjusted to fit data Adj t d t fit d t Bi di Binding constant for cation f i pK me 7.1 ( ‐ ) (sodium) adsorption on quartz Adjusted to fit data Disassociation constant for pK ( ‐ ) 7.5 ( ‐ ) dehydrogenisation of SiOH dehydrogenisation of SiOH χ ζ 2.4 × 10 ‐ 10 Shear plane distance m Revil and Glover (1997) Σ s Surface conduction (protonic) Prot 2.4 × 10 ‐ 9 S Revil and Glover (1997) β s β s 5 × 10 ‐ 9 m 2 /s/V Revil and Glover (1997) Surface mobility y / / ( ) 5. Individual 6. Conclusions 2. Database 3. Theory 4. Plenary 1. Introduction 12/18

  13. SPCC vs. Pore fluid salinity Silica, glass, sand and sand and sandstone 3 different pHs 4 different grain 4 different grain sizes General properties of properties of the SPCC database and absolute values are well described Grain size can b be extremely t l important 5. Individual 6. Conclusions 2. Database 3. Theory 4. Plenary 1. Introduction 13/18

  14. Zeta potential vs. Pore fluid salinity Silica glass Silica, glass, sand and sandstone 3 different pHs 3 different pHs Database measurements are very are very scattered Highly sensitive to changes in pH 5. Individual 6. Conclusions 2. Database 3. Theory 4. Plenary 1. Introduction 14/18

  15. 5. Individual 6. Conclusions 2. Database 3. Theory 4. Plenary 1. Introduction 15/18

  16. Individual modelling suggests Individual modelling suggests that the operating pH is low (about pH 5.5). 5. Individual 6. Conclusions 2. Database 3. Theory 4. Plenary 1. Introduction 16/18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend