high luminosity high energy lhc perspectives on taus
play

High Luminosity/High Energy LHC perspectives on Taus Emilie - PowerPoint PPT Presentation

High Luminosity/High Energy LHC perspectives on Taus Emilie Passemar Indiana University/Jefferson Laboratory HL/HE LHC meeting Fermilab, April 5, 2018 Emilie Passemar Outline : 1. Introduction and Motivation: 2. Lepton Flavour Violation 3.


  1. High Luminosity/High Energy LHC perspectives on Taus Emilie Passemar Indiana University/Jefferson Laboratory HL/HE LHC meeting Fermilab, April 5, 2018 Emilie Passemar

  2. Outline : 1. Introduction and Motivation: 2. Lepton Flavour Violation 3. Other interesting topics with tau decays 4. Conclusion and outlook Emilie Passemar

  3. 1.1 Quest for New Physics • New era in particle physics : (unexpected) success of the Standard Model : a successful theory of microscopic phenomena with no intrinsic energy limitation • Where do we look? Everywhere! search for New Physics with broad search strategy given lack of clear indications on the SM-EFT boundaries ( both in energies and effective couplings ) • Hint from B physics anomalies? b → c charged currents: τ vs. light leptons (µ, e) [R(D), R(D*)] 3 Emilie Passemar Emilie Passemar

  4. 1.1 Quest for New Physics • New era in particle physics : (unexpected) success of the Standard Model : a successful theory of microscopic phenomena with no intrinsic energy limitation • Where do we look? Everywhere! search for New Physics with broad search strategy given lack of clear indications on the SM-EFT boundaries ( both in energies and effective couplings ) • Hint from B physics anomalies? b → c charged currents: τ vs. light leptons (µ, e) [R(D), R(D*)] b L c L b L c L NP W τ L ν L ν L τ L , ℓ L Key unique role of Tau physics 4 Emilie Passemar Emilie Passemar

  5. 1.2 τ lepton as a unique probe of new physics • In the quest of New Physics, can be sensitive to very high scale: E sdsd – Kaon physics: Λ � 10 5 TeV ⇒ [ ε K ] Λ 2 Λ NP τ µ – Tau Leptons: µeff Λ � 10 3 TeV 4 2 ⇒ [ τ → µ γ ] Λ 2 • At low energy: lots of experiments e.g., BaBar , Belle , BESIII, LHCb important improvements on measurements and bounds obtained and more expected ( Belle II , LHCb, ATLAS, CMS ) Λ LE • In many cases no SM background: e.g., LFV, EDMs • For some modes accurate calculations of hadronic uncertainties essential, e.g. CPV in hadronic Tau decays Tau leptons very important to look for New Physics ! 5

  6. 1.2 τ lepton as a unique probe of new physics • A lot of progress in tau physics since its discovery on all the items described before important experimental efforts from LEP , CLEO, B factories: Babar, Belle, BES, VEPP-2M, LHCb, neutrino experiments , … Number of τ pairs Experiment More to come from LHCb, BES, LEP ~3x10 5 VEPP-2M, Belle II, CMS, ATLAS, CLEO ~1x10 7 HL/HI LHC BaBar ~5x10 8 Belle ~9x10 8 But τ physics has still potential • Belle II ~10 12 “ unexplored frontiers ” deserve future exp. & th. efforts • In the following, some selected examples 6 Emilie Passemar

  7. 1.3 The Program Adapted from Talk by Y. Grossman@CLFV2013 Muon LFV Intensity Frontier Charged Lepton µ + → e + γ ν e ↔ ν µ WG’13 µ + → e + e + e − ν e ↔ ν τ ν µ ↔ ν τ µ − N → e − N µ − N → e + N ′ µ + e − → µ − e + NeutrinoOscillations τ → ℓγ τ → ℓℓ + i ℓ − µ → µ γ LFV j τ → ℓ + hadrons ( g − 2) µ , (EDM) µ Tau LFV τ → τγ Muon LFC ( g − 2) τ , (EDM) τ CPV in τ → K πν τ τ → K ππν τ Tau LFC τ → N πν τ Thanks to Ba Emilie Passemar 7

  8. 2. Charged Lepton-Flavour Violation

  9. 2.1 Introduction and Motivation • Lepton Flavour Number is an « accidental » symmetry of the SM (m ν =0) • In the SM with massive neutrinos effecEve CLFV verEces are Eny due to GIM suppression unobservably small rates! µ → e γ E.g.: e , µ µ , τ 2 Δ m 1 i ) = 3 α 2 ( ∑ Br µ → e γ < 10 − 54 * U µ i U ei 32 π 2 M W i = 2,3 Petcov’77, Marciano & Sanda’77, Lee & Shrock’77 … ( ) < 10 − 40 ⎡ ⎤ Br τ → µ γ ⎣ ⎦ • Extremely clean probe of beyond SM physics • In New Physics models: seazible effects Comparison in muonic and tauonic channels of branching raEos, conversion rates and spectra is model-diagnosEc Emilie Passemar 9

  10. 2.1 Introduction and Motivation tτ � tτ � • In New Physics scenarios CLFV can reach observable levels in several � channels Talk by D. Hitlin @ CLFV2013 • But the sensitivity of particular modes to CLFV couplings is model dependent • Comparison in muonic and tauonic channels of branching ratios, conversion rates and spectra is model-diagnostic Emilie Passemar 10

  11. Emilie Passemar 2.2 Tau LFV • • Several processes: 10 − 8 10 − 6 48 LFV modes studied at Belle and BaBar e − γ µ − γ − e π 0 µ − π 0 − e K 0 S µ − K 0 S − e η µ − − η e η′ (958) µ − η′ (958) e − ρ 0 µ − ρ 0 τ → ℓ γ , τ → ℓ α ℓ β ℓ β , τ → ℓ Y − e ω µ − 90% CL upper limits on τ LFV decays − ω e ● K ∗ (892) µ − 0 K ∗ ATLAS (892) e − 0 K ∗ (892) µ − 0 ∗ K (892) 0 − e φ µ − φ e − f BaBar (980) 0 µ − f (980) 0 − e e + − e − e µ + µ − µ − + e µ − Belle µ − + e e − e − µ + e − µ − µ + µ − ● e − π + π − CLEO e + π − π − µ − π + π − µ + π − π − − e π + K − e − K + π − LHCb e + π − K − − e K 0 P , S , V , PP ,... K 0 S − e S K + K − + e K − K − µ − π + K − µ − K + π − µ + π − K − µ − K 0 K 0 S µ − Spring 2017 S + K K − µ + HFLAV K − K − π − Λ π − Λ p µ − µ − p µ + µ − 11

  12. Emilie Passemar 2.2 Tau LFV • • Several processes: 10 − 8 10 − 6 Expected sensiEvity 10 -9 or beWer at LHCb, ATLAS, CMS, Belle II, HL-LHC? e − γ µ − γ − e π 0 µ − π 0 − e K 0 S µ − K 0 S − e η µ − − η e η′ (958) µ − η′ (958) e − ρ 0 µ − ρ 0 τ → ℓ γ , τ → ℓ α ℓ β ℓ β , τ → ℓ Y − e ω µ − 90% CL upper limits on τ LFV decays − ω e ● K ∗ (892) µ − 0 K ∗ ATLAS (892) e − 0 K ∗ (892) µ − 0 ∗ K (892) 0 − e φ µ − φ e − f BaBar (980) 0 µ − f (980) 0 − e e + − e − e µ + µ − µ − + e µ − Belle µ − + e e − e − µ + e − µ − µ + µ − ● e − π + π − CLEO e + π − π − µ − π + π − µ + π − π − − e π + K − e − K + π − LHCb e + π − K − − e K 0 P , S , V , PP ,... K 0 S − e S K + K − + e K − K − µ − π + K − µ − K + π − µ + π − K − µ − K 0 K 0 S µ − Spring 2017 S + K K − µ + HFLAV K − K − π − Λ π − Λ p µ − µ − p µ + µ − 12

  13. Approximate number of decays studied τ 5 6 7 8 9 10 10 10 10 10 10 10 90% CL Upper Limit on Branching Ratio -2 10 S. Banerjee’17 τ → µ γ MarkII τ → µ η ARGUS -4 τ → µ µ µ 10 DELPHI CLEO -6 10 Belle BaBar LHCb -8 10 mSUGRA + seesaw SUSY + SO(10) SM + seesaw Belle II SUSY + Higgs -10 10 1980 1990 2000 2010 2020 YEAR B2TIP’18 Emilie Passemar 13

  14. 2.3 Effective Field Theory approach See e.g. Black, Han, He, Sher’02 (6) L = L SM + C (5) C i Λ O (5) + ∑ + ... (6) Brignole & Rossi’04 Λ 2 O i Dassinger et al.’07 i Matsuzaki & Sanda’08 Giffels et al.’08 Crivellin, Najjari, Rosiek’13 • Build all D>5 LFV operators: Petrov & Zhuridov’14 Cirigliano, Celis, E.P.’14 Ø Dipole: ! τ D ⊃ − C D e.g. ! µ Λ 2 m τ µ σ µ ν P L , R τ F µ ν L eff τ µ Emilie Passemar 14

  15. 2.3 Effective Field Theory approach See e.g. Black, Han, He, Sher’02 (6) L = L SM + C (5) C i Λ O (5) + ∑ + ... (6) Brignole & Rossi’04 Λ 2 O i Dassinger et al.’07 i Matsuzaki & Sanda’08 Giffels et al.’08 Crivellin, Najjari, Rosiek’13 • Build all D>5 LFV operators: Petrov & Zhuridov’14 Cirigliano, Celis, E.P.’14 D ⊃ − C D Ø Dipole: Λ 2 m τ µ σ µ ν P L , R τ F µ ν L eff Ø Lepton-quark (Scalar, Pseudo-scalar, Vector, Axial-vector): q ϕ ≡ h 0 , H 0 , A 0 τ C S , V S , V ⊃ − Γ ≡ 1 2 m τ m q G F µ Γ P L , R τ q Γ q L eff e.g. Λ q µ μ e µ τ Γ ≡ γ µ • q q Emilie Passemar 15

  16. 2.3 Effective Field Theory approach See e.g. Black, Han, He, Sher’02 (6) L = L SM + C (5) C i Λ O (5) + ∑ + ... (6) Brignole & Rossi’04 Λ 2 O i Dassinger et al.’07 i Matsuzaki & Sanda’08 Giffels et al.’08 Crivellin, Najjari, Rosiek’13 • Build all D>5 LFV operators: Petrov & Zhuridov’14 Cirigliano, Celis, E.P.’14 D ⊃ − C D Ø Dipole: Λ 2 m τ µ σ µ ν P L , R τ F µ ν L eff C S , V S ⊃ − 2 m τ m q G F µ Γ P L , R τ q Γ q Ø Lepton-quark (Scalar, Pseudo-scalar, Vector, Axial-vector): L eff Λ Ø Integrating out heavy quarks generates gluonic operator G ⊃ − C G a G a 1 2 m τ G F µ P L , R τ G µ ν µ ν Λ 2 µ P L , R τ QQ à L eff Λ q ϕ ≡ h 0 , H 0 , A 0 τ • q µ Emilie Passemar 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend