partial functional correspondence
play

Partial Functional Correspondence Emanuele Rodol` a USI Lugano - PowerPoint PPT Presentation

Partial Functional Correspondence Emanuele Rodol` a USI Lugano Joint work with A. T orsello M.M. Bronstein L. Cosmo D. Cremers SGP, Berlin, 21 June 2016 1/26 Shape correspondence problem Isometric 2/26 Shape correspondence problem


  1. Partial Functional Correspondence Emanuele Rodol` a USI Lugano Joint work with A. T orsello M.M. Bronstein L. Cosmo D. Cremers SGP, Berlin, 21 June 2016 1/26

  2. Shape correspondence problem Isometric 2/26

  3. Shape correspondence problem Isometric Partial 2/26

  4. Shape correspondence problem Isometric Partial Different representation 2/26

  5. Shape correspondence problem Isometric Partial Different representation Non-isometric 2/26

  6. Point-wise maps t y j x i X Y Point-wise maps t : X → Y 3/26

  7. Functional maps g f F ( X ) F ( Y ) T Functional maps T : F ( X ) → F ( Y ) Ovsjanikov et al., 2012 3/26

  8. Functional correspondence f ↓ T ↓ g Ovsjanikov et al., 2012 4/26

  9. Functional correspondence + a 2 + · · · + a k f ≈ a 1 ↓ T ↓ g ≈ b 1 + b 2 + + b k · · · Ovsjanikov et al., 2012 4/26

  10. Functional correspondence + a 2 + · · · + a k f ≈ a 1 ↓ ↓ C ⊤ Translates Fourier coefficients from Φ to Ψ T ↓ ↓ g ≈ b 1 + b 2 + + b k · · · Ovsjanikov et al., 2012 4/26

  11. Functional correspondence + a 2 + · · · + a k f ≈ a 1 ↓ ↓ C ⊤ Φ ⊤ Translates Fourier coefficients from Φ to Ψ T ≈ Ψ k k ↓ ↓ g ≈ b 1 + b 2 + + b k · · · g ⊤ Ψ k = f ⊤ Φ k C where Φ k = ( φ 1 , . . . , φ k ) , Ψ k = ( ψ 1 , . . . , ψ k ) are Laplace-Beltrami eigenbases Ovsjanikov et al., 2012 4/26

  12. Functional correspondence + a 2 + · · · + a k f ≈ a 1 ↓ ↓ C ⊤ Φ ⊤ Translates Fourier coefficients from Φ to Ψ T ≈ Ψ k k ↓ ↓ g ≈ b 1 + b 2 + + b k · · · G ⊤ Ψ k = F ⊤ Φ k C where Φ k = ( φ 1 , . . . , φ k ) , Ψ k = ( ψ 1 , . . . , ψ k ) are Laplace-Beltrami eigenbases Ovsjanikov et al., 2012 4/26

  13. Functional correspondence in Laplacian eigenbases For isometric simple spectrum shapes C is diagonal since ψ i = ± T φ i 5/26

  14. Our setting Full model Partial query 6/26

  15. Partial Laplacian eigenvectors ζ 2 ζ 3 ζ 4 ζ 5 ζ 6 ζ 7 ζ 8 ζ 9 ψ 2 ψ 3 ψ 4 ψ 5 ψ 6 ψ 7 ψ 8 ψ 9 φ 2 φ 3 φ 4 φ 5 φ 6 φ 7 φ 8 φ 9 Laplacian eigenvectors of a shape with missing parts (Neumann boundary conditions) 7/26

  16. Partial Laplacian eigenvectors Functional correspondence matrix C 8/26

  17. Perturbation analysis: intuition ∆ X φ 1 φ 2 φ 3 X ¯ X ∆ X φ 1 φ 2 φ 3 ¯ ¯ ¯ ∆ ¯ φ 1 φ 2 φ 3 X Ignoring boundary interaction: disjoint parts (block-diagonal matrix) Eigenvectors = Mixture of eigenvectors of the parts 9/26

  18. Perturbation analysis: eigenvalues 8 . 00 · 10 − 2 X 6 . 00 4 . 00 r k Y 2 . 00 0 . 00 10 20 30 40 50 eigenvalue number k ≈ area( X ) Slope r area( Y ) (depends on the area of the cut) Consistent with Weyl’s law 10/26

  19. Perturbation analysis: details ∆ X X t E ¯ ∆ X + t D X X t E ⊤ ∆ ¯ X + t D ¯ X ∆ ¯ X 11/26

  20. Perturbation analysis: details ∆ X X t E ¯ ∆ X + t D X X t E ⊤ ∆ ¯ X + t D ¯ X ∆ ¯ X “How would the Laplacian eigenvalues and eigenvectors of the red part change if we attached a blue part to it?” 11/26

  21. Perturbation analysis: boundary interaction strength 20 10 Value of f Eigenvector perturbation depends on length and position of the boundary Perturbation strength ≤ c � ∂X f ( x ) dx , where n � φ i ( x ) φ j ( x ) � 2 � f ( x ) = λ i − λ j i,j =1 j � = i 12/26

  22. Partial functional maps Given full model shape Y and query shape X corresponding to an unknown approximately isometric part Y ′ ⊂ Y , the partial functional map T : F ( X ) → F ( Y ) is given by Tf = diag( v ) g where v ∈ F ( Y ) is an indicator function of the part solve ⇒ 13/26

  23. Partial functional maps Given full model shape Y and query shape X corresponding to an unknown approximately isometric part Y ′ ⊂ Y , the partial functional map T : F ( X ) → F ( Y ) is given by Tf = diag( v ) g where v ∈ F ( Y ) is an indicator function of the part Optimization problem w.r.t. correspondence and part C ,v � F ⊤ ΦC − G ⊤ diag( η ( v )) Ψ � 2 , 1 + ρ corr ( C ) + ρ part ( v ) min where η ( t ) = 1 2 (tanh(2 t − 1) + 1) saturates the part membership function 14/26

  24. Partial functional maps C ,v � F ⊤ ΦC − G ⊤ diag( η ( v )) Ψ � 2 , 1 + ρ corr ( C ) + ρ part ( v ) min 15/26

  25. Partial functional maps C ,v � F ⊤ ΦC − G ⊤ diag( η ( v )) Ψ � 2 , 1 + ρ corr ( C ) + ρ part ( v ) min Part regularization � � 2 � � ρ part ( v ) = µ 1 area( X ) − η ( v ) dx + µ 2 �∇ Y η ( v ) � dx Y Y Bronstein and Bronstein 2008 15/26

  26. Partial functional maps C ,v � F ⊤ ΦC − G ⊤ diag( η ( v )) Ψ � 2 , 1 + ρ corr ( C ) + ρ part ( v ) min Part regularization � � 2 � � ρ part ( v ) = µ 1 area( X ) − η ( v ) dx + µ 2 �∇ Y η ( v ) � dx Y Y � �� � � �� � area preservation Mumford − Shah Bronstein and Bronstein 2008 15/26

  27. Partial functional maps C ,v � F ⊤ ΦC − G ⊤ diag( η ( v )) Ψ � 2 , 1 + ρ corr ( C ) + ρ part ( v ) min Part regularization � � 2 � � ρ part ( v ) = µ 1 area( X ) − η ( v ) dx + µ 2 �∇ Y η ( v ) � dx Y Y � �� � � �� � area preservation Mumford − Shah Correspondence regularization � � ρ corr ( C ) = µ 3 � C ◦ W � 2 ( C ⊤ C ) 2 (( C ⊤ C ) ii − d i ) 2 F + µ 4 ij + µ 5 i � = j i Bronstein and Bronstein 2008 15/26

  28. Partial functional maps C ,v � F ⊤ ΦC − G ⊤ diag( η ( v )) Ψ � 2 , 1 + ρ corr ( C ) + ρ part ( v ) min Part regularization � � 2 � � ρ part ( v ) = µ 1 area( X ) − η ( v ) dx + µ 2 �∇ Y η ( v ) � dx Y Y � �� � � �� � area preservation Mumford − Shah Correspondence regularization � � ρ corr ( C ) = µ 3 � C ◦ W � 2 ( C ⊤ C ) 2 (( C ⊤ C ) ii − d i ) 2 + µ 4 + µ 5 F ij � �� � i � = j i slant � �� � � �� � rank ≈ r ≈ orthogonality Bronstein and Bronstein 2008 15/26

  29. Partial functional maps C ,v � F ⊤ ΦC − G ⊤ diag( η ( v )) Ψ � 2 , 1 + ρ corr ( C ) + ρ part ( v ) min Part regularization � � 2 � � ρ part ( v ) = µ 1 area( X ) − η ( v ) dx + µ 2 �∇ Y η ( v ) � dx Y Y � �� � � �� � area preservation Mumford − Shah Correspondence regularization � � ρ corr ( C ) = µ 3 � C ◦ W � 2 ( C ⊤ C ) 2 (( C ⊤ C ) ii − d i ) 2 + µ 4 + µ 5 F ij � �� � i � = j i slant � �� � � �� � rank ≈ r ≈ orthogonality F , G = dense SHOT descriptor in all our experiments Bronstein and Bronstein 2008; Tombari et al. 2010 15/26

  30. Structure of partial functional correspondence 4 2 0 0 20 40 60 80 100 C ⊤ C C W singular values 16/26

  31. Alternating minimization C -step: fix v ∗ , solve for correspondence C C � F ⊤ ΦC − G ⊤ diag( η ( v ∗ )) Ψ � 2 , 1 + ρ corr ( C ) min v -step: fix C ∗ , solve for part v � F ⊤ ΦC ∗ − G ⊤ diag( η ( v )) Ψ � 2 , 1 + ρ part ( v ) min v 17/26

  32. Alternating minimization C -step: fix v ∗ , solve for correspondence C C � F ⊤ ΦC − G ⊤ diag( η ( v ∗ )) Ψ � 2 , 1 + ρ corr ( C ) min v -step: fix C ∗ , solve for part v � F ⊤ ΦC ∗ − G ⊤ diag( η ( v )) Ψ � 2 , 1 + ρ part ( v ) min v Iteration 1 2 3 4 17/26

  33. Example of convergence Time (sec.) 0 5 10 15 20 25 10 10 C -step 10 9 ν -step 10 8 Energy 10 7 10 6 10 5 10 4 0 20 40 60 80 100 Iteration 18/26

  34. Examples of partial functional maps 19/26

  35. Examples of partial functional maps 19/26

  36. Examples of partial functional maps 19/26

  37. Examples of partial functional maps 19/26

  38. Partial functional maps vs Functional maps 100 150 100 80 50 % Correspondences PFM 60 Func. maps 40 50 100 20 150 0 0 0.05 0.1 0.15 0.2 0.25 Geodesic error Correspondence performance for different rank values k 20/26

  39. Partial correspondence performance (SHREC’16) Cuts Holes 100 % Correspondences 80 60 40 20 0 0 0.05 0.1 0.15 0.2 0.25 0 0.05 0.1 0.15 0.2 0.25 Geodesic Error Geodesic Error PFM RF IM EN GT SHREC’16 Partial Matching benchmark Rodol` a et al. 2016; Methods: Rodol` a, Cosmo, Bronstein, Torsello, Cremers 2016 ( PFM ); Sahillio˘ glu and Yemez 2012 (IM); Rodol` a et al. 2012 (GT); Rodol` a et al. 2013 (EN); Rodol` a et al. 2014 (RF) 21/26

  40. Conclusions Partial deformable shape matching is a challenging problem, much less investigated than the full case 22/26

  41. Conclusions Partial deformable shape matching is a challenging problem, much less investigated than the full case Functional correspondence has a slanted diagonal structure, with slant equal to area ratio 22/26

  42. Conclusions Partial deformable shape matching is a challenging problem, much less investigated than the full case Functional correspondence has a slanted diagonal structure, with slant equal to area ratio Spectral shape analysis still yields good results! 22/26

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend