parametrizing linear systems
play

Parametrizing Linear Systems Daniel Robertz (joint work with F. - PowerPoint PPT Presentation

Parametrizing Linear Systems Daniel Robertz (joint work with F. Chyzak, A. Quadrat) Lehrstuhl B f ur Mathematik 29.10.2010 Outline Module-theoretic approach to linear systems Parametrizing linear systems Injective


  1. Parametrizing Linear Systems Daniel Robertz (joint work with F. Chyzak, A. Quadrat) Lehrstuhl B f¨ ur Mathematik 29.10.2010

  2. Outline ◮ Module-theoretic approach to linear systems ◮ Parametrizing linear systems ◮ Injective parametrizations

  3. 1. Module-theoretic approach to linear systems

  4. Linear System D ring (field, integral domain, Ore algebra, . . . ) R ∈ D q × p , F left D -module y ∈ F p . R y = 0 , P ∈ D p × r “optimal” answer for us: s.t. ker( R . ) = im( P . ) not possible in general Example. D = k a (skew) field. ◮ Gaussian elimination singles out parameters ◮ injective parametrization

  5. Example de Rham complex: Ω ⊆ R 3 convex F = C ∞ (Ω), D = R [ ∂ x , ∂ y , ∂ z ], e.g. 0 1 0 1 ∂ x 0 ∂ z − ∂ y A . A . ∂ y − ∂ z 0 ∂ x ` ∂ x @ @ ´ ∂ z ∂ y − ∂ x 0 ∂ y ∂ z . → F 3 × 1 → F 3 × 1 0 → R → F − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − − → F → 0 0 1 0 1 ∂ x 0 ∂ z − ∂ y . ∂ y . − ∂ z 0 ∂ x ` ∂ x @ A @ A ´ ∂ z ∂ y − ∂ x 0 . ∂ y ∂ z − D 1 × 3 − D 1 × 3 0 ← M ← D ← − − − − − ← − − − − − − − − − − − − − − ← − − − − − − − − − − D ← 0

  6. Module-theoretic approach to linear systems R ∈ D q × p Σ : R y = 0, D = ring of functional operators M = D 1 × p / D 1 × q R independent of eq.’s chosen for Σ F = signal space If F is an injective cogenerator for D M then hom D ( · , F ) � Sol F ( M ) M is a categorical duality. Malgrange, Oberst, Pommaret, Quadrat, Willems, Zerz, . . .

  7. � � � � Module-theoretic approach to linear systems M = D 1 × p / D 1 × q R R ∈ D q × p , Σ : R y = 0, F injective cogenerator for D M : . R . S D 1 × p D 1 × q D 1 × r 0 M exact if and only if (apply hom D ( · , F )) � Sol F ( M ) � F p R . � F q S . � F r 0 exact. Fundamental principle (Ehrenpreis, Malgrange, Palamodov) for D = C [ ∂ 1 , . . . , ∂ n ] acting by differentiation on F : F ∈ { complex-valued C ∞ -functions on R n , e.g. complex-valued distributions on R n , formal / convergent power series }

  8. 2. Parametrizing linear systems

  9. � � � � � � � � � � � Parametrization and torsion-freeness Let M be given by the finite presentation ρ . R 0 D 1 × p D 1 × q . M Assume P is a parametrization, i.e. . P . R D 1 × r D 1 × p D 1 × q is an exact sequence of left D -modules. Then M is torsion-free: . P . R F r D 1 × r D 1 × p D 1 × q � ��������� ι ∗ ι ρ Sol F ( M ) M � �������� 0 0 0

  10. Example F. Dubois, N. Petit, and P. Rouchon, Motion Planning and Nonlinear Simulations for a Tank Containing a Fluid , Proc. ECC, Karlsruhe (Germany), 1999.  φ 1 ( t − 2) + φ 2 ( t ) − 2 ˙  φ 3 ( t − 1) = 0 ,  φ 1 ( t ) + φ 2 ( t − 2) − 2 ˙ φ 3 ( t − 1) = 0 . D := Q [ ∂, δ ] (differential time-delay operators) � � δ 2 1 − 2 δ ∂ ∈ D 2 × 3 , R := δ 2 1 − 2 δ ∂ M := D 1 × 3 / D 1 × 2 R

  11. � � � � Parametrizability test M = D 1 × p / D 1 × q R M ⊤ = D q × 1 / R D p × 1 � 0 1 2 δ ∂ „ δ 2 A . « 2 δ ∂ 1 − 2 δ ∂ @ . δ 2 + 1 δ 2 1 − 2 δ ∂ � D 3 × 1 � D 2 × 1 � M ⊤ � 0 D 1 × 1 0 1 2 δ ∂ „ δ 2 . 2 δ ∂ 1 − 2 δ ∂ « @ A . δ 2 + 1 δ 2 1 − 2 δ ∂ D 1 × 1 D 1 × 3 D 1 × 2 not exact 0 1 2 δ ∂ „ δ 2 « . 2 δ ∂ 1 − 2 δ ∂ @ A . δ 2 + 1 δ 2 1 − 2 δ ∂ D 1 × 1 D 1 × 3 D 1 × 2 � ������������������ „ 1 « − 1 0 R ′ := − δ 2 − 1 0 2 δ ∂ D 1 × 2

  12. � � Parametrizability test 0 1 2 δ ∂ „ δ 2 2 δ ∂ « . 1 − 2 δ ∂ @ A . δ 2 + 1 δ 2 1 − 2 δ ∂ D 1 × 1 D 1 × 3 D 1 × 2 � ������������������ „ 1 « − 1 0 R ′ := − δ 2 − 1 0 2 δ ∂ D 1 × 2 t ( M ) = D 1 × 2 R ′ / D 1 × 2 R � = 0. We have ( δ 2 − 1) ( φ 1 ( t ) − φ 2 ( t )) = 0, In particular, φ 1 − φ 2 is 2-periodic.   2 δ ∂   2 δ ∂ is a parametrization of the subsystem δ 2 + 1   φ 1 ( t ) − φ 2 ( t ) = 0 ,  − φ 2 ( t − 2) − φ 2 ( t ) + 2 ˙ φ 3 ( t − 1) = 0 .

  13. Parametrizability test D ( M ⊤ , D ) ∼ ext 1 In fact, we compute = t ( M ). 0 ↓ t ( M ) 0 0 0 ↓ ↓ ↓ ↓ hom D ( M ⊤ , D ) 0 ← − M ← − F 0 ← − F 1 ← − ← − 0 ↓ ↓ ↓ ↓ hom D ( M ⊤ , K ) 0 ← − K ⊗ D M ← − K ⊗ D F 0 ← − K ⊗ D F 1 ← − ← − 0 ↓ ↓ ↓ ↓ − hom D ( M ⊤ , K / D ) ← 0 ← − ( K / D ) ⊗ D M ← − ( K / D ) ⊗ D F 0 ← − ( K / D ) ⊗ D F 1 ← − 0 ↓ ↓ ↓ ↓ ext 1 D ( M ⊤ , D ) 0 0 0 ↓ 0

  14. Parametrizability test We can compute � � � � δ 2 1 − 1 0 − 1 R ′ := R ′′ := , − δ 2 − 1 0 2 ∂ δ 1 − 1 R = R ′′ R ′ . ker( R ′ ) = 0. which satisfy Here we have t ( M ) ∼ = D 1 × 2 / ( D 1 × 2 R ′′ ), M / t ( M ) ∼ = D 1 × 3 / ( D 1 × 2 R ′ ). ⇒ M / t ( M ) corresponds to the parametrizable subsystem   φ 1 ( t ) − φ 2 ( t ) = 0 ,  − φ 2 ( t − 2) − φ 2 ( t ) + 2 ˙ φ 3 ( t − 1) = 0 .

  15. System Module Homological Algebra autonomous ext 1 D ( M T , D ) � = 0 t ( M ) � = 0 elements controllable, ext 1 D ( M T , D ) = 0 t ( M ) = 0 parametrizable ext i D ( M T , D ) = 0 , parametrization reflexive is parametrizable i = 1 , 2 . . . . . . . . . ext i D ( M T , D ) = 0 , . . . projective 1 ≤ i ≤ gld( D ) flatness free . . . Contributions to this classification: Pommaret-Quadrat, Oberst, Fliess.

  16. Presentations M = D 1 × p / D 1 × q R = D 1 × q ′ R ′ / D 1 × q R t ( M ) ∼ R = R ′′ R ′ , R ′′ ∈ D q × q ′ ker( . R ′ ) = D 1 × r ′ R 2 = D 1 × p / D 1 × q ′ R ′ M / t ( M ) ∼ � R ′′ � t ( M ) ∼ = D 1 × q ′ / D 1 × ( q + r ′ ) R 2

  17. Block-triangular presentation � � R ′′ = D 1 × p / D 1 × q ′ R ′ t ( M ) ∼ M / t ( M ) ∼ = D 1 × q ′ / D 1 × ( q + r ′ ) , R ′ 2 Then, 0 → t ( M ) → M → M / t ( M ) → 0 and   R ′ − I q ′ 0 → t ( M ) → D 1 × ( p + q ′ ) / D 1 × ( q ′ + q + r ′ )   → M / t ( M ) → 0 R ′′ 0 R ′ 0 2 are equivalent extensions. Can integrate R y = 0 in cascade:  R ′ ζ = η,    R ′′ η R y = 0 ⇐ ⇒ = 0 ,    R ′ 2 η = 0

  18. 3. Injective parametrizations

  19. Injective parametrizations In general, we do not get an injective parametrization for Sol F ( M ). Moreover:   x 2 ( t ) − u 2 ( t ) ˙ = 0 ,  x 1 ( t ) − sin( t ) u 1 ( t ) ˙ = 0 has an injective parametrization   u 1 ( t ) = x 1 ( t ) / sin( t ) , ˙  u 2 ( t ) = x 2 ( t ) , ˙ but it is singular at t = 0.

  20. Injective parametrizations Sol F ( M ) has an injective parametrization ⇐ ⇒ M is free Flatness (Fliess, L´ evine, Martin, Rouchon et al., Pomet, . . . ) Hence, we study how to compute bases of free left D -modules. Remark ∃ R ∈ D q × p , M is free of rank p − q ⇐ ⇒ U ∈ GL( p , D ) M ∼ = D 1 × p / D 1 × q R . s.t. R U = ( I q 0) and Theorem (Quillen-Suslin; Stafford) ◮ D = K [ ∂ 1 , . . . , ∂ n ]: projective ⇒ free ◮ D = Weyl algebra (char. 0): stably free of rank ≥ 2 ⇒ free

  21. Computation of bases of free left A n -modules − D 1 × q ← . R − D 1 × p 0 ← − M ← ← − 0 split exact, p − q ≥ 2 . ˜ → D 1 × q − R → ker( . ˜ → D 1 × p 0 − R ) − − → 0 (apply involution of D ) find E ∈ GL( p , D ) such that   R )) = D 1 × ( p − q ) (0 ker( . ( E ˜ 1 ⋆ . . . ⋆ ⇒ I p − q )  .  .   0 1 ⋆ . R ) = D 1 × ( p − q ) (0 ker( . ˜   ⇒ I p − q ) E   0 0 ... ⋆     Q := � E ˜   I p − q ) T , 0 0 ... 1 define E (0 R =       0 0 . . . 0 − D 1 × q ← . Q . R   − D 1 × ( p − q ) − D 1 × p 0 ← ← ← − 0   . . . . . . . . .   . . . I p − q ) � basis of M : the rows of (0 E − 1 mod R 0 0 . . . 0

  22. Stafford’s Theorem D = A n ( k ) = k [ x 1 , . . . , x n ][ ∂ 1 , . . . , ∂ n ], where Q ⊆ k Theorem (Stafford, 1978) For any a , b , c ∈ D there exist λ, µ ∈ D such that D a + D b + D c = D ( a + λ c ) + D ( b + µ c ) . Example. n = 3, D = k [ x 1 , x 2 , x 3 ][ ∂ 1 , ∂ 2 , ∂ 3 ] For a = ∂ 1 , b = ∂ 2 , c = ∂ 3 may choose λ = 0, µ = x 1 : ( − x 1 ∂ 3 − ∂ 2 ) ( a + 0 · c ) + ∂ 1 ( b + x 1 · c ) = c

  23. Stafford’s Theorem – algorithmic! D = A n ( k ) = k [ x 1 , . . . , x n ][ ∂ 1 , . . . , ∂ n ], where Q ⊆ k Theorem (Stafford) For any a , b , c ∈ D there exist λ, µ ∈ D such that D a + D b + D c = D ( a + λ c ) + D ( b + µ c ) . ◮ Hillebrand & Schmale (2001) ◮ Leykin (2004) � Maple package Stafford developed for OreModules

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend