lecture 3 linear systems
play

Lecture 3: Linear systems Habib Ammari Department of Mathematics, - PowerPoint PPT Presentation

Lecture 3: Linear systems Habib Ammari Department of Mathematics, ETH Z urich Numerical methods for ODEs Habib Ammari Linear systems Linear systems: Exponential of a matrix; Linear systems with constant coefficients; Linear


  1. Lecture 3: Linear systems Habib Ammari Department of Mathematics, ETH Z¨ urich Numerical methods for ODEs Habib Ammari

  2. Linear systems • Linear systems: • Exponential of a matrix; • Linear systems with constant coefficients; • Linear system with non-constant real coefficients; • Second order linear equations; • Linearization and stability for autonomous systems. Numerical methods for ODEs Habib Ammari

  3. Linear systems • Exponential of a matrix: • M d ( C ): vector space of d × d matrices with entries in C . • GL d ( C ) ⊂ M d ( C ): group of invertible matrices. • DEFINITION: Matrix norm � A � = max | y | =1 | Ay | . Numerical methods for ODEs Habib Ammari

  4. Linear systems • LEMMA: Properties of the norm • | Ay | ≤ � A � | y | for all y ∈ C d ; • � A + B � ≤ � A � + � B � for all A , B ∈ M d ( C ); • � AB � ≤ � A � � B � for all A , B ∈ M d ( C ). Numerical methods for ODEs Habib Ammari

  5. Linear systems • LEMMA: Jordan-Chevalley decomposition • A ∈ M d ( C ). • There exists C ∈ GL d ( C ) s.t. A has a unique decomposition C − 1 AC = D + N ; • D : Diagonal; N : Nilpotent (i.e., N d = 0); ND = DN . Numerical methods for ODEs Habib Ammari

  6. Linear systems • Exponential of a matrix. • DEFINITION: • For A ∈ M d ( C ), � A n e A = n ! . n ≥ 0 Numerical methods for ODEs Habib Ammari

  7. Linear systems • Properties: • Exponential of the sum: A , B ∈ M d ( C ), If AB = BA ⇒ e A + B = e A e B . • Conjugation and exponentiation: • A , B ∈ M d ( C ) and C ∈ GL d ( C ) s.t. A = C − 1 BC . • e A = C − 1 e B C . • PROOF: � � � A n ( C − 1 BC ) n C − 1 B n C e A = = C − 1 e B C ; n ! = = n ! n ! n ≥ 0 n ≥ 0 n ≥ 0 Numerical methods for ODEs Habib Ammari

  8. Linear systems • Exponential of a diagonalizable matrix: • A : diagonalizable   λ 1 0   ... A = C − 1  C ;  0 λ d • λ 1 , . . . , λ d ∈ C and C ∈ GL d ( C ). • ⇒   e λ 1 0   e A = C − 1 ...  C .  e λ d 0 Numerical methods for ODEs Habib Ammari

  9. Linear systems • Exponential of a block matrix: • A j ∈ M h j ( C ) for j = 1 , ..., p ; A : block matrix of the form   0 A 1   ... A =  .  0 A p •   e A 1 0   e A = ...  .  e A p 0 Numerical methods for ODEs Habib Ammari

  10. Linear systems • Derivative: A ∈ M d ( C ), d dt e tA = Ae tA = e tA A . Numerical methods for ODEs Habib Ammari

  11. Linear systems • Linear systems with constant coefficients • A ∈ M d ( C )): independent of t . • f ∈ C 0 ([0 , T ]). • Linear ODE with constant coefficients:  dx  dt = Ax ( t ) + f ( t ) , t ∈ [0 , T ] , ( ∗ )  x (0) = x 0 ∈ R d . • for all x , y ∈ C d , | A ( x − y ) | ≤ � A �| x − y | • Cauchy-Lipschitz theorem ⇒ there exists a unique solution x to ( ∗ ). • ( ∗ ) autonomous system of equations. Numerical methods for ODEs Habib Ammari

  12. Linear systems • If d = 1 (i.e., A = a ∈ C ), then by the method of integrating factors, � t x ( t ) = e at x 0 + e a ( t − s ) f ( s ) ds . 0 • General case ( d ≥ 1), if f = 0, x ( t ) = e tA x 0 . Numerical methods for ODEs Habib Ammari

  13. Linear systems • For an arbitrary f , d dt ( e − tA x ) = e − tA f ( t ) , • ⇒ � t x ( t ) = e tA x 0 + e ( t − s ) A f ( s ) ds . 0 Numerical methods for ODEs Habib Ammari

  14. Linear systems • Linear system with non-constant real coefficients • Homogeneous case; • Inhomogeneous case. • Homogeneous case: • M d ( R ): vector space of d × d matrices with entries in R . • PROPOSITION: • A : [0 , T ] → M d ( R ): continuous. • S : linear subspace of C 1 ([0 , T ]; R d ) of dimension d : � � x ∈ C 1 ([0 , T ]; R d ) : x satisfies dx S = dt = A ( t ) x Numerical methods for ODEs Habib Ammari

  15. Linear systems • PROOF: • x , y ∈ S ⇒ for any α, β ∈ R , α x + β y ∈ C 1 ([0 , T ]; R d ): also a solution. • ⇒ S : linear subspace of C 1 ([0 , T ]; R d ). Numerical methods for ODEs Habib Ammari

  16. Linear systems • Dimension of S = d : • Define F : S → R d by F [ x ] = x ( t 0 ) for some t 0 ∈ [0 , T ]. • F : linear: F [ α x + β y ] = α x ( t 0 ) + β y ( t 0 ) = α F [ x ] + β F [ y ] . • F : injective, F [ x ] = 0 ⇒ x = 0; • x solves dx dt = A ( t ) x ( t ) with the initial condition x ( t 0 ) = 0. • Cauchy-Lipschitz theorem ⇒ x = 0. Numerical methods for ODEs Habib Ammari

  17. Linear systems • F : surjective: for any x 0 ∈ R d ,  dx  dt = A ( t ) x ( t ) , t ∈ [0 , T ] ,  x ( t 0 ) = x 0 , has a solution x ∈ C 1 ([0 , T ]; R d ). Numerical methods for ODEs Habib Ammari

  18. Linear systems • PROPOSITION: • x 1 , . . . , x d ∈ S ; • [ x 1 , . . . , x d ]: d × d matrix with columns x 1 , . . . , x d ∈ R d ; • det: determinant of a matrix; • Equivalent statements: (i) { x 1 , ..., x d } : basis of S ; (ii) det[ x 1 ( t ) , ..., x d ( t )] � = 0 for all t ∈ [0 , T ]. (iii) det[ x 1 ( t 0 ) , ..., x d ( t 0 )] � = 0 for some t 0 ∈ [0 , T ]. Numerical methods for ODEs Habib Ammari

  19. Linear systems • PROOF: • (i) ⇔ (ii). • (i) ⇒ (iii): { x 1 , ..., x d } : basis of S ⇒ { F [ x 1 ] , ..., F [ x d ] } : basis of R d . • (iii) ⇒ (i): t 0 s.t. (iii) holds; F : S → R d : isomorphism relative to t 0 . • F − 1 : R d → S : isomorphism ⇒ x 1 = F − 1 [ x 1 ( t 0 )] , . . . , x d = F − 1 [ x d ( t 0 )]: basis of S . Numerical methods for ODEs Habib Ammari

  20. Linear systems • DEFINITION: Fundamental matrix • If (i), (ii) or (iii): holds ⇒ x 1 , . . . , x d : fundamental system of solutions of the differential equation dx dt = A ( t ) x . • X = [ x 1 , . . . , x d ]: fundamental matrix of the equation. Numerical methods for ODEs Habib Ammari

  21. Linear systems • DEFINITION: Wronskian determinant • x 1 , ..., x d ∈ S . • Wronskian determinant w ∈ C 1 ([0 , T ]; R ) of x 1 , . . . , x d : w ( t ) = det[ x 1 ( t ) , ..., x d ( t )] . Numerical methods for ODEs Habib Ammari

  22. Linear systems • THEOREM: • x 1 , ..., x d ∈ S ; w ∈ C 1 ([0 , T ]; R d ): Wronskian determinant of x 1 , . . . , x d . • w solves the differential equation dw ( ∗∗ ) dt = ( tr A ( t )) w for t ∈ [0 , T ] . • t r : trace of a matrix. Numerical methods for ODEs Habib Ammari

  23. Linear systems • PROOF: • If x 1 , ..., x d : linearly dependent → w = 0 and ( ∗∗ ) trivially holds. • Suppose that x 1 , ..., x d : linearly independent, i.e., w ( t ) � = 0 for all t ∈ [0 , T ]. • X : [0 , T ] → M d ( R ): fundamental matrix having as columns the solutions x 1 , ..., x d , i.e., X ( t ) = ( x ij ( t )) i , j =1 ,..., d , t ∈ [0 , T ] , x j = ( x 1 j , ..., x dj ) ⊤ for j = 1 , ..., d . Numerical methods for ODEs Habib Ammari

  24. Linear systems • z j : solution of  dz j  dt = A ( t ) z j ( t ) ,  z j ( t 0 ) = e j , { e j } j =1 ,..., d : standard unit orthonormal basis in R d . Numerical methods for ODEs Habib Ammari

  25. Linear systems • ⇒ { z 1 , . . . , z d } : basis of the space of solutions to dz / dt = Az . • There exists C ∈ GL d ( R d ) s.t. X ( t ) = CZ ( t ) , t ∈ [0 , T ] , Z = [ z 1 , . . . , z d ]. • v ( t ) := det Z ( t ) solves dv dt ( t 0 ) = t rA ( t 0 ) . • Z ( t 0 ) = I ⇒ v ( t 0 ) = 1. Numerical methods for ODEs Habib Ammari

  26. Linear systems • Definition of the determinant of a matrix ⇒ � � d dv dt ( t ) = d ( − 1) sgn σ z i σ ( i ) ( t ) dt i =1 σ ∈ S d d � � � ( − 1) sgn σ d = dt z j σ ( j ) ( t ) z i σ ( i ) ( t ); σ ∈ S d j =1 i � = j S d : set of all permutations of the d elements { 1 , 2 , . . . , d } ; sgn σ : signature of the permutation σ . Numerical methods for ODEs Habib Ammari

  27. Linear systems • � z i σ ( i ) ( t 0 ) = 0 unless σ = identity; i � = j • dz jj dt ( t 0 ) = ( A ( t 0 ) z j ( t 0 )) j � d � d = a jh ( t 0 ) z hj ( t 0 ) = a jh ( t 0 ) δ hj ( t 0 ) h =1 h =1 = a jj ( t 0 ) . • ⇒ d � dv dt ( t 0 ) = a jj ( t 0 ) = tr A ( t 0 ) . j =1 Numerical methods for ODEs Habib Ammari

  28. Linear systems • Differentiation of w = det X = det( CZ ) = (det C ) det Z = (det C ) v ; • ⇒ dw dt ( t 0 ) = (det C ) dv dt ( t 0 ) = (det C )tr A ( t 0 ) . • v ( t 0 ) = 1 ⇒ dw dt ( t 0 ) = tr A ( t 0 ) w ( t 0 ) . Numerical methods for ODEs Habib Ammari

  29. Linear systems • REMARK: • t 0 ∈ [0 , T ]. • Abel’s identity or Liouville’s formula: � t t 0 tr A ( s ) ds w ( t ) = w ( t 0 ) e for t ∈ [0 , T ] . • It suffices to check that the determinant of the fundamental matrix: nonzero for one t 0 ∈ [0 , T ]. Numerical methods for ODEs Habib Ammari

  30. Linear systems • Inhomogeneous case • Inhomogeneous linear differential equation: � dx ( ∗ ∗ ∗ ) dt = A ( t ) x + f ( t ); • A ( t ) ∈ C 0 ([0 , T ]; M d ( R )) and f ∈ C 0 ([0 , T ]; R d ). • X : fundamental matrix for the homogeneous equation dx ( t ) / dt = A ( t ) x ( t ), dX dt = AX and det X � = 0 for all t ∈ [0 , T ] . • Any solution x to the homogeneous equation: x ( t ) = X ( t ) c , t ∈ [0 , T ] , for some (column) vector c ∈ R d . Numerical methods for ODEs Habib Ammari

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend