parallel implementation of bddc for mixed hybrid
play

Parallel Implementation of BDDC for Mixed-Hybrid Formulation of - PowerPoint PPT Presentation

Parallel Implementation of BDDC for Mixed-Hybrid Formulation of Flow in Porous Media Jakub stek 1 S joint work with rezina 2 and Bed k 3 Jan B rich Soused 1 Institute of Mathematics of the AS CR Ne cas Center for


  1. Parallel Implementation of BDDC for Mixed-Hybrid Formulation of Flow in Porous Media Jakub ˇ ıstek 1 S´ joint work with rezina 2 and Bedˇ ık 3 Jan Bˇ rich Soused´ 1 Institute of Mathematics of the AS CR ∩ Neˇ cas Center for Mathematical Modelling 2 Technical University of Liberec 3 University of Maryland, Baltimore County T H E M A A T I M C S f o E T U s e T c c I n T e l i b S i c u N S p f o e I R y m h c e e d z a C c A International Conference on Domain Decomposition Methods XXIII Jeju Island, Korea, July 7th, 2015

  2. A T H E M A I T Motivation M C S o f E T U Academy of Sciences T I Czech Republic T S N I Geoengineering simulations numerous examples of flow in porous media — oil and gas reservoirs, pollutant transport, nuclear waste deposits, . . . in the Czech Republic, plans to build the long-term nuclear waste deposit by 2065 – currently seven candidate sites massive granite rock with cracks Source: www.surao.cz Jakub ˇ S´ ıstek BDDC for flows in porous media 2 / 31

  3. A T H E M A T I Motivation M C S o f E T U Academy of Sciences T I Czech Republic T S N I Subsurface flow simulations 20+ years of development of simulation tools at TUL mixed-hybrid finite element method — combined meshes of 3D, 2D and 1D elements need for robust scalable parallel solvers to handle finer models Jakub ˇ S´ ıstek BDDC for flows in porous media 3 / 31

  4. A H T E M A I T Governing equations M S C f o E T U Academy of Sciences I T Czech Republic T S N I Darcy law k − 1 u + ∇ p = −∇ z in Ω ∇ · u = f in Ω p = p N on ∂ Ω N u · n = 0 on ∂ Ω E Ω ⊂ R 3 , ∂ Ω = ∂ Ω N ∪ ∂ Ω E ∂ Ω N , ∂ Ω E . . . natural (Dirichlet) and essential (Neumann) b. c. u . . . velocity of the fluid p . . . pressure head k . . . tensor of the hydraulic conductivity (sym. pos. def.) z . . . third spatial coordinate p h = p + z . . . piezometric head for which u = − k ∇ p h Jakub ˇ S´ ıstek BDDC for flows in porous media 4 / 31

  5. A H T E M A I T Mixed finite element method M S C f o E T U Academy of Sciences I T Czech Republic T S N I Raviart-Thomas ( RT 0 ) finite elements � � v ∈ L 2 (Ω); ∇ · v ∈ L 2 (Ω) and v · n = 0 on ∂ Ω E V ⊂ H (Ω; div) = Q ⊂ L 2 (Ω) Mixed formulation Find a pair { u , p } ∈ V × Q that satisfies � � � � Ω k − 1 u · v dx − Ω p ∇ · v dx = − ∂ Ω N p N v · n ds − Ω v z dx , ∀ v ∈ V � � − Ω q ∇ · u dx = − Ω fq dx , ∀ q ∈ Q Jakub ˇ S´ ıstek BDDC for flows in porous media 5 / 31

  6. A H T E M A I T Mixed finite element method M S C f o E T U Academy of Sciences I T Czech Republic T S N I Raviart-Thomas ( RT 0 ) finite elements � � v ∈ L 2 (Ω); ∇ · v ∈ L 2 (Ω) and v · n = 0 on ∂ Ω E V ⊂ H (Ω; div) = Q ⊂ L 2 (Ω) Mixed formulation Find a pair { u , p } ∈ V × Q that satisfies � � � � Ω k − 1 u · v dx − Ω p ∇ · v dx = − ∂ Ω N p N v · n ds − Ω v z dx , ∀ v ∈ V � � − Ω q ∇ · u dx = − Ω fq dx , ∀ q ∈ Q Jakub ˇ S´ ıstek BDDC for flows in porous media 5 / 31

  7. A T H E M A I T Mixed–hybrid finite element method M C S o f E T U Academy of Sciences T I Czech Republic T S N I Space of Lagrange multipliers � � V i = v ∈ H ( T i ; div) : v ∈ RT 0 ( T i ) V − 1 = V 1 × · · · × V N E � � λ ∈ L 2 ( F ) : λ = v · n | F , v ∈ V Λ = F . . . set of all faces of the elements in triangulation T Mixed–hybrid formulation Find a triple { u , p , λ } ∈ V − 1 × Q × Λ that satisfies �� � � � � N E T i k − 1 u · v dx − T i p ∇ · v dx + ∂ T i \ ∂ Ω λ ( v · n ) | ∂ T i ds = i =1 i � ∂ Ω N p N v · n ds − � N E � − ∀ v ∈ V T i v z dx , i =1 �� � � − � N E T i q ∇ · u dx = − Ω fq dx , ∀ q ∈ Q �� � i =1 � N E ∂ T i \ ∂ Ω µ ( u · n ) | ∂ T i ds = 0 , ∀ µ ∈ Λ i =1 Jakub ˇ S´ ıstek BDDC for flows in porous media 6 / 31

  8. A T H E M A I T Mixed–hybrid finite element method M C S o f E T U Academy of Sciences T I Czech Republic T S N I Space of Lagrange multipliers � � V i = v ∈ H ( T i ; div) : v ∈ RT 0 ( T i ) V − 1 = V 1 × · · · × V N E � � λ ∈ L 2 ( F ) : λ = v · n | F , v ∈ V Λ = F . . . set of all faces of the elements in triangulation T Mixed–hybrid formulation Find a triple { u , p , λ } ∈ V − 1 × Q × Λ that satisfies �� � � � � N E T i k − 1 u · v dx − T i p ∇ · v dx + ∂ T i \ ∂ Ω λ ( v · n ) | ∂ T i ds = i =1 i � ∂ Ω N p N v · n ds − � N E � − ∀ v ∈ V T i v z dx , i =1 �� � � − � N E T i q ∇ · u dx = − Ω fq dx , ∀ q ∈ Q �� � i =1 � N E ∂ T i \ ∂ Ω µ ( u · n ) | ∂ T i ds = 0 , ∀ µ ∈ Λ i =1 Jakub ˇ S´ ıstek BDDC for flows in porous media 6 / 31

  9. A H T E M A I T System of linear algebraic equations M S C f o E T U Academy of Sciences I T Czech Republic T S N I Saddle-point system       B T B T A u g F     =   B 0 0 p f (1) B F 0 0 λ 0 A . . . symmetric positive definite (s.p.d.), block-diagonal matrix with respect to elements � � B B = . . . full row rank if ∂ Ω N � = ∅ B F analysis e.g. in [Brezzi, Fortin (1991)], [Maryˇ ska, Rozloˇ zn´ ık, T˚ uma (2000)], [Tu (2007)], . . . problem (1) has a unique solution Jakub ˇ S´ ıstek BDDC for flows in porous media 7 / 31

  10. A T H E M A T I Modelling of cracks M C S o f T E U Academy of Sciences T I Czech Republic T S N I Combined meshes T 123 = T 1 ∪ T 2 ∪ T 3 T i d − 1 ⊂ F d d = 2 , 3 . . . spatial dimension System with fluxes u d k − 1 + ∇ p d = −∇ z d δ d u d . . . flux — volume per second per unit δ d . . . conversion to velocity in dimension d ( δ 3 = 1, δ 2 is thickness of a fracture, δ 1 cross-section of a channel) Jakub ˇ S´ ıstek BDDC for flows in porous media 8 / 31

  11. A T H E M A T I Modelling of cracks M C S o f T E U Academy of Sciences T I Czech Republic T S N I Combined meshes T 123 = T 1 ∪ T 2 ∪ T 3 T i d − 1 ⊂ F d d = 2 , 3 . . . spatial dimension System with fluxes u d k − 1 + ∇ p d = −∇ z d δ d u d . . . flux — volume per second per unit δ d . . . conversion to velocity in dimension d ( δ 3 = 1, δ 2 is thickness of a fracture, δ 1 cross-section of a channel) Jakub ˇ S´ ıstek BDDC for flows in porous media 8 / 31

  12. A T H E M A T I Coupling of mesh dimensions M C S o f T E U Academy of Sciences I T Czech Republic S T N I Introduce Robin (a.k.a. Newton) boundary conditions 3D–2D 3 · n + + u − f 2 = δ 2 ˜ f 2 + u + 3 · n − 3 · n + = σ + u + 3 ( p + 3 − p 2 ) 3 · n − = σ − u − 3 ( p − 3 − p 2 ) σ + / − > 0 . . . transition coefficients on sides of a 2D element 3 2D–1D � f 1 = δ 1 ˜ u k 2 · n k f 1 + k 2 · n k = σ k u k 2 ( p k 2 − p 1 ) σ k 2 > 0 . . . transition coefficient from k -th 2D element to 1D channel Jakub ˇ S´ ıstek BDDC for flows in porous media 9 / 31

  13. A T H E M A T I Coupling of mesh dimensions M C S o f T E U Academy of Sciences I T Czech Republic S T N I Introduce Robin (a.k.a. Newton) boundary conditions 3D–2D 3 · n + + u − f 2 = δ 2 ˜ f 2 + u + 3 · n − 3 · n + = σ + u + 3 ( p + 3 − p 2 ) 3 · n − = σ − u − 3 ( p − 3 − p 2 ) σ + / − > 0 . . . transition coefficients on sides of a 2D element 3 2D–1D � f 1 = δ 1 ˜ u k 2 · n k f 1 + k 2 · n k = σ k u k 2 ( p k 2 − p 1 ) σ k 2 > 0 . . . transition coefficient from k -th 2D element to 1D channel Jakub ˇ S´ ıstek BDDC for flows in porous media 9 / 31

  14. A T H E M A T I System of linear algebraic equations M C S o f E T U Academy of Sciences T I Czech Republic T S N I Saddle-point system with couplings       B T B T A g u F  − C T    =   B − C p f (2) F − � − C F λ 0 B F C A . . . symmetric positive definite (s.p.d.), block-diagonal matrix with respect to elements � C � C T F C = . . . symmetric positive semi-definite � C F C � B � B = . . . generally no longer full row rank B F Jakub ˇ S´ ıstek BDDC for flows in porous media 10 / 31

  15. A T H E M A T I System of linear algebraic equations M C S o f E T U Academy of Sciences T I Czech Republic T S N I Theorem (Solvability of the saddle-point system) Let natural boundary conditions be prescribed at a certain part of the boundary, i.e. ∂ Ω N , d � = ∅ for at least one d ∈ { 1 , 2 , 3 } . Then the discrete mixed-hybrid problem (2) has a unique solution. details in [ˇ S´ ıstek, Bˇ rezina, Soused´ ık (2015)] Jakub ˇ S´ ıstek BDDC for flows in porous media 11 / 31

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend