pans 4
play

PANS [4] L ARS D AVIDSON Lars Davidson, www.tfd.chalmers.se/lada - PowerPoint PPT Presentation

L ARGE E DDY S IMULATION OF H EAT T RANSFER IN B OUNDARY LAYER AND B ACKSTEP F LOW U SING PANS [4] L ARS D AVIDSON Lars Davidson, www.tfd.chalmers.se/lada PANS L OW R EYNOLDS N UMBER M ODEL [7] k u t + ( k u U j )


  1. L ARGE E DDY S IMULATION OF H EAT T RANSFER IN B OUNDARY LAYER AND B ACKSTEP F LOW U SING PANS [4] L ARS D AVIDSON Lars Davidson, www.tfd.chalmers.se/˜lada

  2. PANS L OW R EYNOLDS N UMBER M ODEL [7] � ∂ k u ∂ t + ∂ ( k u U j ) �� � ∂ k u = ∂ ν + ν u + ( P u − ε u ) ∂ x j ∂ x j σ ku ∂ x j � ∂ε u ε 2 ∂ t + ∂ ( ε u U j ) �� � ∂ε u = ∂ ν + ν u ε u u − C ∗ + C ε 1 P u ε 2 ∂ x j ∂ x j σ ε u ∂ x j k u k u k 2 f 2 f 2 ε 2 = C ε 1 + f k u k k , C ∗ ν u = C µ f µ ( C ε 2 f 2 − C ε 1 ) , σ ku ≡ σ k , σ ε u ≡ σ ε ε u f ε f ε f ε C ε 1 , C ε 2 , σ k , σ ε and C µ same values as [1]. f ε = 1. f 2 and f µ read � R t �� 2 � � − y ∗ � � 2 �� � f 2 = 1 − exp 1 − 0 . 3exp − 3 . 1 6 . 5 � R t �� 2 � � 2 �� � − y ∗ 5 � � f µ = 1 − exp 1 + exp − 14 R 3 / 4 200 t Baseline model: f k = 0 . 4. www.tfd.chalmers.se/˜lada THMT-12, Palermo, Sept 2012 2 / 28

  3. N UMERICAL M ETHOD Incompressible finite volume method Pressure-velocity coupling treated with fractional step Differencing scheme for momentum eqns: ◮ 95 % 2 nd order central and 5 % 2 nd order upwind differencing scheme (baseline) OR ◮ 100 % 2 nd order central differencing Hybrid 1 st order upwind/2 nd order central scheme k & ε eqns. 2 nd -order Crank-Nicholson for time discretization www.tfd.chalmers.se/˜lada THMT-12, Palermo, Sept 2012 3 / 28

  4. B OUNDARY LAYER FLOW : D OMAIN H y δ inlet x L Inlet: δ inlet = 1 (covered by 45 cells), Re θ = 3 600, U in = ρ = 1. Stretching 1 . 12 up to y /δ ≃ 1. Domain: L /δ in = 3 . 2, H /δ in = 15 . 6, Z max = 1 . 5 δ in Resolution: ∆ z + in ≃ 27, ∆ x + in ≃ 54 Grid: 66 × 96 × 64 ( x , y , z ) www.tfd.chalmers.se/˜lada THMT-12, Palermo, Sept 2012 4 / 28

  5. A NISOTROPIC S YNTHETIC F LUCTUATIONS : I [3, 2, 5] Prescribe an homogeneous Reynolds tensor, u i u j (here from DNS) www.tfd.chalmers.se/˜lada THMT-12, Palermo, Sept 2012 5 / 28

  6. A NISOTROPIC S YNTHETIC F LUCTUATIONS : I [3, 2, 5] ( u ′ 2 u ′ 2 ) u ′ 1 ,λ u ′ 2 ,λ = 0 λ ) λ ′ u ′ 1 x 2 ,λ u ( 1 x 1 ,λ Prescribe an homogeneous Reynolds tensor, u i u j (here from DNS) isotropic fluctuations in principal directions, ( u ′ 1 u ′ 1 ) λ = ( u ′ 2 u ′ 2 ) λ , u ′ 1 ,λ u ′ 2 ,λ = 0 www.tfd.chalmers.se/˜lada THMT-12, Palermo, Sept 2012 5 / 28

  7. A NISOTROPIC S YNTHETIC F LUCTUATIONS : I [3, 2, 5] ( u ′ 2 u ′ 2 � u ′ 1 ,λ u ′ 2 ,λ = 0 λ � λ ′ u 1 ′ x 2 ,λ u ( 1 x 1 ,λ Prescribe an homogeneous Reynolds tensor, u i u j (here from DNS) isotropic fluctuations in principal directions, ( u ′ 1 u ′ 1 ) λ = ( u ′ 2 u ′ 2 ) λ , u ′ 1 ,λ u ′ 2 ,λ = 0 re-scale the normal components, ( u ′ 1 u ′ 1 ) λ > ( u ′ 2 u ′ 2 ) λ , using the eigenvalues u ′ 1 ,λ u ′ 2 ,λ = 0 www.tfd.chalmers.se/˜lada THMT-12, Palermo, Sept 2012 5 / 28

  8. A NISOTROPIC S YNTHETIC F LUCTUATIONS : II u ′ 2 u ′ 2 x 2 u ′ 1 u ′ 2 � = 0 u ′ 1 u ′ 1 > u ′ 2 u ′ 2 x 1 Transform from ( x 1 ,λ , x 2 ,λ ) to ( x 1 , x 2 ) u ′ 2 = 23, u ′ 2 1 1 = 5 from ( u ′ 1 u ′ 1 ) peak in DNS channel flow, Re τ = 500 u ′ 2 u ′ 2 2 3 www.tfd.chalmers.se/˜lada THMT-12, Palermo, Sept 2012 6 / 28

  9. I NLET C ONDITIONS FOR k u AND ε u AS IN [6] A pre-cursor RANS simulation using the AKN model (i.e. PANS with f k = 1) is carried out. At Re θ = 3 600, U RANS , V RANS , k RANS are taken. ¯ synt , ¯ synt , ¯ u in = U RANS + u ′ v in = V RANS + v ′ w in = w ′ synt Anisotropic synthetic fluctuations are used. The fluctuations are scaled with k u / k u , max . k u , in = f k k RANS , ε u , in = C 3 / 4 k 3 / 2 u , in /ℓ sgs , ℓ sgs = C s ∆ , ∆ = V 1 / 3 , µ C s = 0 . 05 www.tfd.chalmers.se/˜lada THMT-12, Palermo, Sept 2012 7 / 28

  10. I NLET TURB . FLUCTUATION , TWO - POINT CORRELATIONS Two-point correlation 1 1000 0.8 800 z ) 0.6 600 B ww (ˆ y / H 0.4 400 0.2 200 0 0 0 0.1 0.2 0.3 0.4 0.5 −2 0 2 4 6 stresses ˆ ˆ z /δ , z / H : u + : v + : w + rms , rms , rms : � u ′ v ′ � + ◦ : inlet; : x = 3 δ in www.tfd.chalmers.se/˜lada THMT-12, Palermo, Sept 2012 8 / 28

  11. B OUNDARY LAYER : V ELOCITY AND S KIN F RICTION 100 % CDS −3 x 10 25 3.6 3.4 20 3.2 15 U + C f 3 10 2.8 5 2.6 0 1 10 50 1000 0 0.5 1 1.5 2 2.5 3 y + x : 100 % CDS; : 100 % CDS, U in from AKN; : 25 % larger : x = δ in ; : x = 2 δ in ; : inlet fluct.; : 25 % larger in- x = 3 δ in ; � : DNS [8] let fluct., C s = 0 . 07; markers: 0 . 37 ( log 10 Re x ) − 2 . 584 ( + : AKN; ◦ : DNS); www.tfd.chalmers.se/˜lada THMT-12, Palermo, Sept 2012 9 / 28

  12. R EYNOLDS S TRESSES 1500 1500 1000 1000 y + y + 500 500 0 0 −1 0 1 2 3 −1 0 1 2 3 uv u rms uv v rms , w rms , u rms : x = δ in ; : x = 2 δ in ; : x = 3 δ in ; Markers: DNS [8] x = 3 δ in . www.tfd.chalmers.se/˜lada THMT-12, Palermo, Sept 2012 10 / 28

  13. B ACKWARD F ACING S TEP : D OMAIN y 4 H q w x H 4 . 05 H 21 H Re H = 28 000 Experiments by Vogel & Eaton [9] Mean inlet profiles from RANS (same as in boundary layer) Grid: 336 × 120 in x × y plane. Z max = 1 . 6 H , N k = 64, ∆ z + in = 31. Anisotropic synthetic fluctuations, u ′ , v ′ , w ′ (same as for boundary layer flow); no fluctuations for t ′ Constant heat flux, q w , on lower wall. www.tfd.chalmers.se/˜lada THMT-12, Palermo, Sept 2012 11 / 28

  14. B ACKSTEP FLOW . S KIN FRICTION AND S TANTON NUMBER −3 −3 x 10 4x 10 4 3.5 3 3 2 St C f 2.5 1 2 0 −1 1.5 −2 1 −5 0 5 10 15 20 0 5 10 15 x / H x / H : PANS; : PANS, 50 % smaller inlet fluctuations; : WALE; • : : 2D RANS; ◦ , • : experiments [9]. PANS, no inlet fluctuations; www.tfd.chalmers.se/˜lada THMT-12, Palermo, Sept 2012 12 / 28

  15. B ACKSTEP FLOW : V ELOCITIES . x = − 1 . 13 H x = 3 . 2 H x = 14 . 86 H 2.6 2.5 2.5 2.4 2 2 2.2 2 1.5 1.5 1.8 1 1 1.6 1.4 0.5 0.5 1.2 1 0 0 0 0.2 0.4 0.6 0.8 1 −0.2 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 � ¯ � ¯ � ¯ u � / U in u � / U in u � / U in : PANS; : PANS, 50 % smaller inlet fluctuations; : WALE; • : PANS, no inlet fluctuations; : 2D RANS; ◦ : experiments [9]. www.tfd.chalmers.se/˜lada THMT-12, Palermo, Sept 2012 13 / 28

  16. B ACKSTEP FLOW : R ESOLVED S TREAMWISE S TRESS . x = − 1 . 13 H x = 3 . 2 H x = 14 . 86 H 2.6 2.5 2.5 2.4 2 2 2.2 2 y / H 1.5 1.5 1.8 1 1 1.6 1.4 0.5 0.5 1.2 1 0 0 0 0.05 0.1 0.15 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 u rms / U in u rms / U in u rms / U in : PANS; : PANS, 50 % smaller inlet fluctuations; : WALE; • : PANS, no inlet fluctuations; : 2D RANS; ◦ : experiments [9]. www.tfd.chalmers.se/˜lada THMT-12, Palermo, Sept 2012 14 / 28

  17. B ACKSTEP FLOW : T URBULENT V ISCOSITIES . x = − 1 . 13 H x = 3 . 2 H x = 14 . 86 H 2.6 2.5 2.5 2.4 2 2 2.2 2 y / H 1.5 1.5 1.8 1 1 1.6 1.4 0.5 0.5 1.2 1 0 0 0 2 4 6 8 0 5 10 15 20 0 5 10 15 ν u /ν ν u /ν ν u /ν : PANS; : PANS, 50 % smaller inlet fluctuations; : WALE; • : PANS, no inlet fluctuations; : 2D RANS/10; www.tfd.chalmers.se/˜lada THMT-12, Palermo, Sept 2012 15 / 28

  18. F ORWARD /B ACKWARD F LOW Fraction of time, γ , when the flow along the bottom wall is in the downstream direction. 1 0.8 0.6 γ 0.4 0.2 0 0 2 4 6 8 10 12 14 x / H : PANS; : PANS, 50 % smaller inlet fluctuations; : WALE; • : PANS, no inlet fluctuations; ◦ : experiments [9]. www.tfd.chalmers.se/˜lada THMT-12, Palermo, Sept 2012 16 / 28

  19. S HEAR S TRESSES . x = 3 . 2 H PANS RANS 0.1 0.1 0.08 0.08 0.06 0.06 y / H 0.04 0.04 0.02 0.02 0 0 −5 0 5 10 15 −5 0 5 10 15 −4 −4 x 10 x 10 : ν ∂ � ¯ u � : 2 � ν t ¯ : −� uv � ; ◦ : 2 � ν t ¯ s 12 � ; ∂ y ; s 12 � − � uv � . www.tfd.chalmers.se/˜lada THMT-12, Palermo, Sept 2012 17 / 28

  20. S HEAR S TRESSES . x = 14 . 86 PANS RANS 0.1 0.1 0.08 0.08 0.06 0.06 y / H 0.04 0.04 0.02 0.02 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 −3 −3 x 10 x 10 : ν ∂ � ¯ u � : 2 � ν t ¯ : −� uv � ; ◦ : 2 � ν t ¯ s 12 � ; ∂ y ; s 12 � − � uv � . www.tfd.chalmers.se/˜lada THMT-12, Palermo, Sept 2012 18 / 28

  21. T ERMS IN THE � ¯ u � E QUATION . x = 3 . 2 H PANS RANS 0.1 0.1 0.08 0.08 0.06 0.06 y / H 0.04 0.04 0.02 0.02 0 0 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 : ν ∂ 2 � ¯ : − ∂ � ¯ u �� ¯ ; + : − ∂ � ¯ u �� ¯ : ∂ u � u � v � ∂ y ( 2 � ν t ¯ s 12 � ) ; ∂ y 2 ; ; ⋆ : ∂ x ∂ y − ∂ � ¯ ∂ x , △ : − ∂ � uv � p � . ∂ y www.tfd.chalmers.se/˜lada THMT-12, Palermo, Sept 2012 19 / 28

  22. T ERMS IN THE � ¯ u � E QUATION . x = 14 . 86 H PANS RANS 0.1 0.1 0.08 0.08 0.06 0.06 y / H 0.04 0.04 0.02 0.02 0 0 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 : ν ∂ 2 � ¯ : − ∂ � ¯ u �� ¯ ; + : − ∂ � ¯ u �� ¯ : ∂ u � u � v � ∂ y ( 2 � ν t ¯ s 12 � ) ; ∂ y 2 ; ; ⋆ : ∂ x ∂ y − ∂ � ¯ ∂ x , △ : − ∂ � uv � p � . ∂ y www.tfd.chalmers.se/˜lada THMT-12, Palermo, Sept 2012 20 / 28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend