a new approach to treat the rans les interface in pans 1
play

A New Approach to Treat the RANS-LES interface in PANS [1] Lars - PowerPoint PPT Presentation

A New Approach to Treat the RANS-LES interface in PANS [1] Lars Davidson Lars Davidson, www.tfd.chalmers.se/lada PANS Low Reynolds Number Model [4] k k t + ( kU j ) = + t + ( P ) x j x


  1. A New Approach to Treat the RANS-LES interface in PANS [1] Lars Davidson Lars Davidson, www.tfd.chalmers.se/˜lada

  2. PANS Low Reynolds Number Model [4] � ∂ k ∂ k ∂ t + ∂ ( kU j ) = ∂ �� ν + ν t � + ( P − ε ) ∂ x j ∂ x j σ ku ∂ x j � ∂ε ε 2 ∂ε ∂ t + ∂ ( ε U j ) = ∂ �� ν + ν t � + C ε 1 P ε k − C ∗ ε 2 ∂ x j ∂ x j σ ε u ∂ x j k k 2 f 2 f 2 ε 2 = C ε 1 + f k k k ν t = C µ f µ ε , C ∗ ( C ε 2 f 2 − C ε 1 ) , σ ku ≡ σ k , σ ε u ≡ σ ε f ε f ε f ε LRN Damping functions, f 2 , f µ as in [4] f ε = 1 . 0 LES region: f k = 0 . 4 RANS region: f k = 1 . 0 www.tfd.chalmers.se/˜lada ETMM10, Marbella, 2014 2 / 19

  3. PANS Low Reynolds Number Model [4] � ∂ k ∂ k ∂ t + ∂ ( kU j ) = ∂ �� ν + ν t � + ( P − ε ) ∂ x j ∂ x j σ ku ∂ x j � ∂ε ε 2 ∂ε ∂ t + ∂ ( ε U j ) = ∂ �� ν + ν t � + C ε 1 P ε k − C ∗ ε 2 ∂ x j ∂ x j σ ε u ∂ x j k k 2 f 2 f 2 ε 2 = C ε 1 + f k k k ν t = C µ f µ ε , C ∗ ( C ε 2 f 2 − C ε 1 ) , σ ku ≡ σ k , σ ε u ≡ σ ε f ε f ε f ε LRN Damping functions, f 2 , f µ as in [4] f ε = 1 . 0 LES region: f k = 0 . 4 RANS region: f k = 1 . 0 ◮ Zonal RANS-LES: f k has a large gradient at the RANS-LES interface www.tfd.chalmers.se/˜lada ETMM10, Marbella, 2014 2 / 19

  4. PANS: derivation The PANS k equation is derived by multiplying the RANS k equation by f k . The left hand reads Dk tot f k (1) Dt where D / Dt = ∂/∂ t + ¯ u i ∂/∂ x i , k tot = k + k res (modeled plus resolved). If it is assumed that f k constant, Eq. 1 can be re-written as Dk tot = Df k k tot = Dk k Dt , f k = (2) f k Dt Dt k tot If f k is not constant, Eq. 2 must be written as (Girimaji & Wallin [2]) Dk tot = Df k k tot Df k Dt = Dk Df k − k tot Dt − k tot f k Dt Dt Dt This work presents models for the boxed term at RANS-LES interfaces, i.e. www.tfd.chalmers.se/˜lada ETMM10, Marbella, 2014 3 / 19

  5. PANS: derivation The PANS k equation is derived by multiplying the RANS k equation by f k . The left hand reads Dk tot f k (1) Dt where D / Dt = ∂/∂ t + ¯ u i ∂/∂ x i , k tot = k + k res (modeled plus resolved). If it is assumed that f k constant, Eq. 1 can be re-written as Dk tot = Df k k tot = Dk k Dt , f k = (2) f k Dt Dt k tot If f k is not constant, Eq. 2 must be written as (Girimaji & Wallin [2]) Dk tot = Df k k tot Df k Dt = Dk Df k − k tot Dt − k tot f k Dt Dt Dt This work presents models for the boxed term at RANS-LES interfaces, i.e. ◮ horizontal RANS-LES interface in boundary layer (channel flow) www.tfd.chalmers.se/˜lada ETMM10, Marbella, 2014 3 / 19

  6. PANS: derivation The PANS k equation is derived by multiplying the RANS k equation by f k . The left hand reads Dk tot f k (1) Dt where D / Dt = ∂/∂ t + ¯ u i ∂/∂ x i , k tot = k + k res (modeled plus resolved). If it is assumed that f k constant, Eq. 1 can be re-written as Dk tot = Df k k tot = Dk k Dt , f k = (2) f k Dt Dt k tot If f k is not constant, Eq. 2 must be written as (Girimaji & Wallin [2]) Dk tot = Df k k tot Df k Dt = Dk Df k − k tot Dt − k tot f k Dt Dt Dt This work presents models for the boxed term at RANS-LES interfaces, i.e. ◮ horizontal RANS-LES interface in boundary layer (channel flow) ◮ vertical RANS-LES interface in embedded LES (channel flow) www.tfd.chalmers.se/˜lada ETMM10, Marbella, 2014 3 / 19

  7. Interface Model 1 In [2], k tot Df k / Dt is represented by introducing an additional turbulent viscosity, ν tr , in the momentum equation � ∂ ¯ � ∂ s ij = 1 u i + ∂ ¯ u j ( ν tr ¯ s ij ) , ¯ ∂ x j 2 ∂ x j ∂ x i where ν tr = P k tr Df k Dt = k Df k s | 2 = k tot s | 2 , P k tr = ν tr | ¯ | ¯ f k Dt The object of P k tr is to decrease ν t and facilitate growth of resolved turbulence on the LES side of an interface Hence, only ν tr < 0 is used which corresponds to Df k / Dt < 0 (from RANS to LES). ν t + ν tr > 0 in the momentum equation (but not in the k equation) www.tfd.chalmers.se/˜lada ETMM10, Marbella, 2014 4 / 19

  8. Interface Model 2 This model is identical to Model 1 except that k / f k is replaced by k tot i.e. P k tr = k Df k Df k P k tr = k tot f k Dt Dt Model 2 Model 1 k tot = k + 1 u ′ u ′ 2 � ¯ i ¯ i � r . a where subscript r . a . denotes running average. In PANS, f k is defined as f k = k / k tot In post-processing it is usually found that f k > k / k tot (approx. a factor 4 larger) ⇒ | P k tr | model 2 > | P k tr | model 1 www.tfd.chalmers.se/˜lada ETMM10, Marbella, 2014 5 / 19

  9. Interface Model 3 s | 2 which may cause numerical problems. In Models 1 & 2, ν tr = P k tr / | ¯ Model 3 does not involve ν tr . The original term k tot Df k / Dt is used in the k equation Adding the term Df k k ¯ u ′ Df k i − 0 . 5¯ u ′ Dt − i � ¯ u ′ m ¯ u ′ m � Dt in the momenum equation corresponds to the time-averaged term � ¯ u ′ i ¯ u ′ � − k � ¯ u ′ i ¯ u ′ i � Df k Df k Dt = −� k tot � Df k i − 2 Dt � ¯ u ′ m ¯ u ′ m � Dt in the k res equation. However, this term causes numerical instability. Hence it is not used. Only the term in the k equation, k tot Df k / Dt < 0, is used. www.tfd.chalmers.se/˜lada ETMM10, Marbella, 2014 6 / 19

  10. Interface Models: summary s | 2 < 0, in Models 1 & 2: additional turbulent viscosity, ν tr = P k tr / | ¯ P k and momentum equations ◮ Limit in momentum equations: ν t + ν tr > 0 ◮ Model 1: P k tr = k Df k f k Dt Df k ◮ Model 2: P k tr = � k tot � r . a Dt Model 3: additional production term, P k tr , in k equation without use of ν tr Df k P k tr = � k tot � r . a Dt < 0 Models 1-3 correspond to the non-commutivity in DES beteen filtering and spatial derivative at RANS-LES interfaces (Hamba [3]) = ∂ ¯ ∂ ¯ ∂ f − ∂ ∆ f f ∂ x i ∂ x i ∂ x i ∂ ∆ www.tfd.chalmers.se/˜lada ETMM10, Marbella, 2014 7 / 19

  11. Fully Developed Channel Flow The URANS and the LES regions. LES, f k = 0 . 4 URANS, f k = 1 y int y wall x Re τ = u τ δ/ν = 2 000, Re = 4 000 and Re = 8 000 x max = 3 . 2, y max = 2 and z max = 1 . 6. 32 × 32 cells in the x − z plane N y = 80 cells ( Re τ = 2 000 and 4 000) or N y = 96 ( Re τ = 8 000) www.tfd.chalmers.se/˜lada ETMM10, Marbella, 2014 8 / 19

  12. Fully Developed Channel Flow: Results Velocity Turbulent viscosity 30 150 ( ν t + ν tr ) /ν 100 20 U + 50 10 0 0 100 1000 0 500 1000 y + y + Df k Df k : Model k : Model k tot Dt . : no interface model. f k Dt +: U + = ln( y + ) / 0 . 4 + 5 . 2 • : location of the computational cell centers. www.tfd.chalmers.se/˜lada ETMM10, Marbella, 2014 9 / 19

  13. Fully Developed Channel Flow: Results Production terms in k eq modeled & resolved stresses 1 −� u ′ v ′ � resolved 40 0.5 P k + P k tr 20 0 12 − τ 12 , 0 −0.5 modeled − τ ν −20 −1 0 500 1000 0 0.5 1 y y + Df k Df k : Model k : Model k tot Dt . : no interface model. f k Dt • : the location of the computational cell centers. www.tfd.chalmers.se/˜lada ETMM10, Marbella, 2014 10 / 19

  14. Embedded Channel Flow Interface LES, f k = 0 . 4 RANS f k = 1 2 y x 0 . 95 5 . 45 Re τ = u τ δ/ν = 950 The domain size is 6 . 4 × 2 × 1 . 6 ( x , y , z ) 128 × 80 × 64 cells. www.tfd.chalmers.se/˜lada ETMM10, Marbella, 2014 11 / 19

  15. Synthetic Fluctuations at the Interface 2 1 0.8 1.5 z ) 0.6 B ww (ˆ 1 y 0.4 0.2 0.5 0 0 0 0.5 1 1.5 2 0 0.1 0.2 0.3 0.4 ˆ z : u 2 rms / u 2 τ : v 2 rms / u 2 τ : w 2 rms / u 2 Two-point correlation of synthetic in- τ : � u ′ v ′ � / u 2 let fluctuations τ www.tfd.chalmers.se/˜lada ETMM10, Marbella, 2014 12 / 19

  16. Velocity and Skin Friction Friction velocity Velocity at x = 5 . 5 20 1.1 u � / u τ, in ∗ 15 1 u τ 10 � ¯ ◦ 0.9 5 0 0.8 0 1 2 0 2 4 6 10 10 10 y + x : Model k Df k f k Dt Df k : Model k tot Dt : no interface model ∗ : u τ , RANS when x → ∞ ◦ : U + = ln( y + ) / 0 . 4 + 5 . 2 ◦ : u τ , PANS when x → ∞ www.tfd.chalmers.se/˜lada ETMM10, Marbella, 2014 13 / 19

  17. Resolved and Modeled Turbulence Streamwise fluctuation Turbulent viscosities 100 y (( ν tot ( x , y ) /ν rms ( x , y )) 15 80 10 60 y ( u 2 40 max 5 max 20 0 0 0 2 4 6 0 2 4 6 x x Df k : Model k f k Dt Df k : Model k tot Dt : no interface model ν tot = ν + ν t + ν tr www.tfd.chalmers.se/˜lada ETMM10, Marbella, 2014 14 / 19

  18. Production at Interface x = 1 1 0.8 0.6 y 0.4 0.2 0 −1000 −500 0 500 Production of k : P k + P k tr , Model k Df k Dt . f k Df k : P k + P k tr , Model k tot Dt . : P k , no interface model; www.tfd.chalmers.se/˜lada ETMM10, Marbella, 2014 15 / 19

  19. Conclusions Three interface models for horizontal (wall-parallel) and vertical interfaces (embedded LES) have been presented: www.tfd.chalmers.se/˜lada ETMM10, Marbella, 2014 16 / 19

  20. Conclusions Three interface models for horizontal (wall-parallel) and vertical interfaces (embedded LES) have been presented: k Df k Dt added via ν t tr to the k eq and mom eq ( ν t tr + ν t > 0): Model 1 ◮ f k www.tfd.chalmers.se/˜lada ETMM10, Marbella, 2014 16 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend