p conserving c and t violation in effective field theory
play

P-Conserving, C- and T- violation in Effective Field Theory Chien - PowerPoint PPT Presentation

P-Conserving, C- and T- violation in Effective Field Theory Chien Yeah Seng Amherst Center for Fundamental Interactions (ACFI), Physics Department, University of Massachusetts Amherst In collaboration with Basem El-Menoufi and Michael J.


  1. P-Conserving, C- and T- violation in Effective Field Theory Chien Yeah Seng Amherst Center for Fundamental Interactions (ACFI), Physics Department, University of Massachusetts Amherst In collaboration with Basem El-Menoufi and Michael J. Ramsey-Musolf Time-reversal Tests in Nuclear and Hadronic Processes workshop, ACFI, 7 November 2014

  2. Outline Outline 1. Some Background 2. Effective PCTV Operators 3. Numerical estimations of the dim-5 contribution to T-violating experimental observables 4. Conclusion

  3. 1. Some Background

  4. I need: • Baryon number violation • C and CP-violation • Interaction out of thermal equilibrium Assuming CPT: T-violation  CP-violation Andrei Sakharov CP-violation  C-conservation, P-violation OR C-violation, P-conservation

  5. • Standard Model T-violation only comes from the complex phase in the CKM-matrix. • Characterized by Jarlskog invariant: J º 3E-5. \ SM background is small! • C-even P-odd: tightly constrained by EDM searches. • C-odd P-even: less constrained by experiments. One reason: particles/ particle systems with definite C-parity are few and difficult to prepare in large quantities.

  6. Limits on C-even, P-odd observables: EDM Particle Current Upper Bound on EDM (e cm) Electron 8.7E-29 Mercury 3.1E-29 Proton 7.9E-25 Neutron 2.9E-26 And a lot more!

  7. Limits on C-odd observables: neutral ϕ -decays C-Odd Decay Decay Width (eV) Channel π Ø 3 g < 2.4E-7 η Ø π 0 g < 1E-1 η Ø 2 π 0 g < 7E-1 η Ø 3 π 0 g < 8E-2 η Ø 3 g < 2.1E-2 η Ø π 0 e + e - < 5E-2 η Ø π 0 m + m - < 7E-3 (PDG 2014) (C=(-1) l+s for L + L - system)

  8. • Another C-oven, P-even observable: the “D-coefficient” in the polarized neutron β -decay          2 ( )  d G V p p p p p p   2 2         ˆ ( 1 3 ) | | ( 1 ( )) F ud e e e g p E E a s A B D     5 ( 2 ) A e e n dE d d E E E E E E     e e e e e Ando, McGovern and Sato, Phys.Lett. B677 (2009) 109-115 • Current experimental limit:       4 ( 0 . 96 1 . 89 1 . 01 ) 10 D Mumm et al, Phys.Rev.Lett. 107 (2011) 102301 (strictly speaking the D-coefficient could be a function of the energies of the outgoing particles)

  9. 2. Effective PCTV operators

  10. • EFT analysis: write down higher-order PCTV operators that consist of SM fields. • PCTV interaction cannot arise via tree-level boson exchange in a renormalizable gauge theory ( Herczeg, Hyperfine Interact, 75, 127 (1992) ) • Lowest-dimension flavor-conserving PCTV operators have dimension 7. ( Conti and Khriplovich, Phys.Rev.Lett. 68 (1992) 3262-3265 ) Ramsey-Musolf, Phys.Rev.Lett. 83 (1999) 3997-4000

  11. Direct vs Indirect Probe • Direct probe: Look for PCTV-observables. E.g. a PCTV 4-quark operator:   ˆ        ( ) O q i q D D q q q    4 1 5 1 2 5 2 could directly generate a PCTV nucleon-nucleon interaction, or generate a long-range ρ NN-operator: ˆ               ( ) O NN i N N      which then generate a PCTV nucleon-nucleon interaction.        p n n p (Question: how about operators like: ?) 5 5

  12. • Indirect probe: the PCTV operator can generate PVTV observables (such as EDMs) via electroweak loop- corrections. Ramsey-Musolf, Phys.Rev.Lett. 83 (1999) 3997-4000 Indirect probes usually set more stringent bounds because PVTV observables are more constrained experimentally.

  13. • How about flavor non-diagonal operators? Consider a “pseudo-Chern-Simons” (pCS) type of interaction coming from gauging the axial anomaly of QCD under SU(2) L XU(1) Y : ~ ˆ     ~ O p n e F   L L (S. Gardner, Hadronic Probes of Fundamental Symmetries workshop, 2014); Harvey, Hill and Hill, hep-ph/0708.1281v2 Before integrating out the W-boson, it looks like: ~ ˆ   ~ O p nW F   (gauge invariance is ensured by some complicated anomaly analysis) • We think it is subject to EDM constraints as well via loop corrections like: g p n n W Unless there’s some peculiar cancelation between diagrams.

  14. Is there any interesting operator in lower dimension? • We can write down a dim-5, flavor non- conserving PCTV operator:   c       ( ) L iv u dW d uW   PCTV  2 TV which could arise from dim-6 T-violating operators before EWSB: ˆ         ( ) i d H Q Q H d B  1 R L L R   i i ˆ         ( ) i i d H Q Q H d W  2 R L L R 2 2 ~ ~ ˆ         ( ) i u H Q Q H u B  3 R L L R   ~ i i ~ ˆ         ( ) i i u H Q Q H u W  4 R L L R 2 2

  15. Perform a set of linear combinatio ns : 2 ˆ ˆ     ' 1 1 c w 2 ˆ ˆ    ' 2 3 c w ˆ ˆ ˆ ˆ ˆ          ' ( ) 2 ( ) t 3 1 3 2 4 w ˆ ˆ ˆ ˆ ˆ            ' ( ) 2 ( ) t 4 1 3 2 4 w   After EWSB and neglecting and terms : Z W W ˆ      ' (tree - level d - EDM) vi d dF  1 5 ˆ      ' (tree - level u - EDM) vi u uF  2 5 ˆ         ' ( - ) (PCTV operator) vi d uW u dW   3 ˆ            ' ( ) (" weak trans ition EDM" ) vi d uW u dW   4 5 5

  16. 3. Numerical estimations of the dim-5 contribution to T-violating experimental observables

  17. (a). D-coefficient induced by the dim-5 operator      n p p u d n g u u T p n q Nucleon tensor charge W μ ig             ( ...) iM V u g g iF q u  5 ud p V A n 2 2 The imaginary part of F induces a D-coefficient º 1): With our dim-5 operator we obtain (set g V 4 2 g v       ( ) { 2 ( 1 )( ) 4 } T D E c g m m E   2 2 e A n p e ( 1 3 ) g V g ud A TV

  18. using:  1 . 038 g (lattice calculation, hep-ph1303.6953) T with a typical energy of the outgoing electron:  ( . ) 0 . 25 MeV K E e   0 . 76 MeV E e and the current bound on the D-coefficient:    4 | | 4 10 D we obtain: J. Martin, JLab Hall C Summer Meeting, 2007 c    4 - 2 4 10 GeV  TV 2

  19. (b). Nucleon EDM induced by the dim-5 operator W Quark EDMs could be generated via diagrams like: d d u u Since the PCTV operator already breaks chiral symmetry so there’s no quark-mass g suppression to the EDM. Naïve dimensional analysis (NDA) estimation: eV g v m ~ ln ud W d c    2 2 q 16 TV

  20. For order of magnitude estimation, assume: d ~ d n q Current neutron EDM bound:      26 -12 2 . 9 10 cm 1.5 10 GeV d n e e m By naively ta king ln ~ 1 we get : W  c  10  12 - 2 GeV  TV 2 •This is a much more stringent bound than that set by direct PCTV observables! •Question: how do we distinguish effects between tree- level PVTV operators and loop-level PCTV operators?

  21. • More rigorous analysis: compute the mixing of various dim-6 T-violating operators, and run it down from Λ TV to EW scale. W ˆ         ( ) i d H Q Q H d B  1 R L L R   Q d i i ˆ L R         ( ) i i d H Q Q H d W  2 R L L R 2 2 B ~ ~ H ˆ         ( ) i u H Q Q H u B  3 R L L R B   ~ ~ i i ˆ         ( ) i i u H Q Q H u W  4 R L L R 2 2 Q d ˆ      L R . i d H Q H H h c 5 R L ~ ~ ~ ˆ      . W H i u H Q H H h c 6 R L CALCULATION IN PROGRESS!

  22. Ø 3 g (c). P-even ϕ induced by the dim-5 operator Ø 3 g • The dim-5 PCTV operator could induce a ϕ decay which is C-odd and P-even via diagrams like:   q q   W W  q q 

  23. • Effective Operator Analysis: write down lowest order ϕ Ø 3 g operators in terms of ϕ , F μν (and its dual) and derivatives. • Useful rules:    0 F F F   ~    0 F F F   ~    0 F              0 F F F    0 (EOM) F  • The effective C-violating, P-conserving ϕ Ø 3 g operator begins at dim-9! Only ONE independent operator: ~ ˆ        ( )( ) O CVPC F F F      3

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend