hadronic parity violation in effective field theory
play

Hadronic Parity Violation in Effective Field Theory Matthias R. - PowerPoint PPT Presentation

Hadronic Parity Violation in Effective Field Theory Matthias R. Schindler University of South Carolina The 19th Particles and Nuclei International Conference July 2429, 2011 Collaborators: H. W. Griehammer, D. R. Phillips, R. P .


  1. Hadronic Parity Violation in Effective Field Theory Matthias R. Schindler University of South Carolina The 19th Particles and Nuclei International Conference July 24–29, 2011 Collaborators: H. W. Grießhammer, D. R. Phillips, R. P . Springer 1 / 18

  2. Hadronic parity violation and effective field theory Two-nucleon sector Three-nucleon sector Conclusion & Outlook 2 / 18

  3. Hadronic parity violation Weak interaction between quarks induces parity-violating component in nucleon-nucleon ( NN ) interaction Effects highly suppressed ∼ 10 − 6 − 10 − 7 Parity violation to isolate weak component Range of weak quark-quark interactions ∼ 0 . 002 fm Probe of nonperturbative QCD 3 / 18

  4. Few-nucleon experiments Complex nuclei: enhancement up to ∼ 10 % effect Relation to NN interaction? Theoretically difficult Two-nucleon system � pp scattering (Bonn, PSI, TRIUMF , LANL) � np → d γ (SNS, LANSCE, Grenoble) � np spin rotation? Few-nucleon systems � n α spin rotation (NIST) � p α scattering (PSI) 3 He ( � n , p ) 3 H (SNS) � nd → t γ (SNS?) � nd spin rotation? 4 / 18

  5. Theory goals Variety of experiments Unified framework Model-independent Check consistency of results Defendable theoretical errors Two- and few-body systems Energies � 10s of MeV Ideally suited for pionless effective field theory [EFT( π / )] 5 / 18

  6. Pionless EFT Model-independent framework Lagrangian with all terms allowed by symmetries At very low energy cannot resolve pion exchange NN contact terms with increasing number of derivatives Leading-order parity-conserving Lagrangian � ∇ 2 2 M ) N − 1 8 C ( 1 S 0 ) L = N † ( i ∂ 0 + ( N T τ 2 τ a σ 2 N ) † ( N T τ 2 τ a σ 2 N ) 0 − 1 8 C ( 3 S 1 ) ( N T τ 2 σ 2 σ i N ) † ( N T τ 2 σ 2 σ i N ) + . . . , 0 6 / 18

  7. Parity violation in EFT( π / ) At leading order: 5 independent PV NN contributions 1 Experimental input to determine 5 coefficients � � � � † ↔ C ( 3 S 1 − 1 P 1 ) � N T σ 2 � N T σ 2 τ 2 i L PV = − στ 2 N · ∇ N � � � † ↔ + C ( 1 S 0 − 3 P 0 ) � N T σ 2 τ 2 � N T σ 2 � τ N · σ · τ 2 � τ i ∇ N (∆ I = 0 ) � † � σ · τ 2 τ b ↔ � + C ( 1 S 0 − 3 P 0 ) ǫ 3 ab � N T σ 2 τ 2 τ a N N T σ 2 � ∇ N (∆ I = 1 ) � † � � ↔ + C ( 1 S 0 − 3 P 0 ) I ab � N T σ 2 τ 2 τ a N N T σ 2 � σ · τ 2 τ b i ∇ N (∆ I = 2 ) j � † � ↔ �� + C ( 3 S 1 − 3 P 1 ) ǫ ijk � N T σ 2 σ i τ 2 N N T σ 2 σ k τ 2 τ 3 ∇ N + h . c . 1 Savage, Springer (1998); Zhu et. al. (2005); Girlanda (2008); Phillips, MRS, Springer (2009) 7 / 18

  8. Nucleon-nucleon scattering Simplest process � NN cross section Strong contribution does not depend on helicity Weak contribution does depend on helicity Consider asymmetry in � N + N A L = σ + − σ − σ + + σ − Interference between strong and weak P S + P S 8 / 18

  9. Leading-order results: pp / nn 2 = 8 k A pp / nn A pp / nn L 1 S 0 C 0 � C ( 1 S 0 − 3 P 0 ) + C ( 1 S 0 − 3 P 0 ) + C ( 1 S 0 − 3 P 0 ) � A pp = 4 (∆ I = 0 ) (∆ I = 1 ) (∆ I = 2 ) � C ( 1 S 0 − 3 P 0 ) − C ( 1 S 0 − 3 P 0 ) + C ( 1 S 0 − 3 P 0 ) � A nn = 4 (∆ I = 0 ) (∆ I = 1 ) (∆ I = 2 ) No Coulomb interaction for pp ( ∼ 3% at 15 MeV) Depends on ratio of PV and PC constant 1 S 0 ⇒ Renormalization point-dependence of A pp / nn dictated by C 0 2 Phillips, MRS, Springer (2009) 9 / 18

  10. Leading-order results: np  1 S 0 3 S 1  1 S 0 3 S 1 d σ d σ A A A np np np d Ω d Ω L = 8 k +   d Ω + 3 d σ 3 S 1 1 S 0 1 S 0 d Ω + 3 d σ 3 S 1 1 S 0 3 S 1 d σ d σ C C 0 0 d Ω d Ω 1 S 0 � C ( 1 S 0 − 3 P 0 ) − 2 C ( 1 S 0 − 3 P 0 ) � A np = 4 (∆ I = 0 ) (∆ I = 2 ) 3 S 1 � C ( 3 S 1 − 1 P 1 ) − 2 C ( 3 S 1 − 3 P 1 ) � A np = 4 � − 1 �� 1 � 2 d σ + k 2 d Ω = a 1 S 0 3 S 1 Measure at 2 different energies: disentangle A np and A np 10 / 18

  11. � np spin rotation � np scattering amplitude related to spin rotation angle 3 1 d φ PV = M 1 � Re [ M + ( m p ) − M − ( m p )] ρ d l 2 k 2 m p = ± 1 2 � Rotation angle at NLO with g ( X − Y ) = C ( X − Y ) 32 π : M C X 0 d φ np 1 � ( 18 . 1 ± 1 . 8 ) g ( 3 S 1 − 3 P 1 ) + ( 9 . 0 ± 0 . 9 ) g ( 3 S 1 − 1 P 1 ) PV = ρ d l rad + ( − 37 . 0 ± 3 . 7 ) g ( 1 S 0 − 3 P 0 ) + ( 74 . 4 ± 7 . 4 ) g ( 1 S 0 − 3 P 0 ) � (∆ I = 0 ) (∆ I = 2 ) 1 MeV 2 � d φ np � 10 − 6 − 10 − 7 � rad � � � PV � ≈ � � d l m � � � 3 Grießhammer, MRS, Springer 11 / 18

  12. Electromagnetic processes Asymmetry in � np → d γ C ( 3 S 1 − 3 P 1 ) A γ = 32 M 1 S 0 ) 3 S 1 3 κ 1 ( 1 − γ a C 0 NPDGamma @ SNS Related to deuteron anapole moment through C ( 3 S 1 − 3 P 1 ) 4 Circular polarization in np → d � γ C ( 1 S 0 − 3 P 0 ) − 2 C ( 1 S 0 − 3 P 0 ) P γ ∼ a C ( 3 S 1 − 1 P 1 ) (∆ I = 0 ) (∆ I = 2 ) + b 3 S 1 1 S 0 C C 0 0 Experimental result consistent with P γ = 0 Use high-intensity free electron lasers for � γ d → np ? 4 Savage (2001); MRS, Springer (2009); Knyazkov (1983) 12 / 18

  13. Three-nucleon systems Parity-conserving sector Describe 3 N systems with NN interactions only? Na¨ ıve power counting: | 2 N | > | 3 N | > | 4 N | > . . . Analysis of nd scattering in 2 S 1 2 wave 5 3 N interaction at leading order for renormalization Additional experimental input (e.g. scattering length) Parity-violating sector Na¨ ıve power counting: 3 N interaction higher order If not: even more experiments needed 5 Bedaque, Hammer, van Kolck (1999) 13 / 18

  14. Parity violation in 3 N sector Analyze high-momentum behavior of loop integrals, e.g., Parity-conserving amplitude known Include leading-order PV 2 N interaction 6 No PV 3 N interaction at LO and NLO 6 Grießhammer, MRS (2011) 14 / 18

  15. � nd spin rotation nd scattering amplitude at NLO 7 � Verified that no PV 3NI required for renormalization d φ nd 1 � ( 15 . 9 ± 1 . 6 ) g ( 3 S 1 − 1 P 1 ) − ( 36 . 6 ± 3 . 7 ) g ( 3 S 1 − 3 P 1 ) PV = ρ d l rad +( 4 . 6 ± 1 . 0 ) ( 3 g ( 1 S 0 − 3 P 0 ) − 2 g ( 1 S 0 − 3 P 0 ) � ) (∆ I = 0 ) (∆ I = 1 ) 1 MeV 2 � � d φ nd � ≈ 10 − [ 6 ... 7 ] rad � � PV � � � d l � m � 7 Grießhammer, MRS, Springer 15 / 18

  16. Cutoff dependence � � � � �� � � � � � � � ��� � � � � � � � � � � � � � 15 � � 1 � 2 � c � g � 3 S 1 � 1 P 1 � � � rad MeV � � � � � � � � � � � � � ��� � � � � � � 10 � 5 g � 3 S 1 � 1 P 1 � 0 � 200 500 1000 2000 5000 � � MeV � � � � � 5 � � � � � � � ��� � � � � �� � � � � 4 � 1 � 2 � � � � � c � � � � rad MeV � � � � � � � � 3 � � � � ��� � � � � � � � 2 � � � � 1 0 � 200 500 1000 2000 5000 � � MeV � 16 / 18

  17. Conclusion & Outlook Hadronic parity violation Probe nonperturbative QCD phenomena: inside-out probe Current and proposed experiments Low-energy Few-nucleons Need consistent analysis and interpretation 17 / 18

  18. Conclusion & Outlook EFT for parity-violating NN interactions 5 independent operators at LO in EFT( π / ) 2-body observables � pp scattering, � np spin rotation, np ↔ d γ Not enough information PV 3 body sector No PV 3-body operators at LO and NLO � nd spin rotation � nd → t γ Few-body observables Parity-conserving: EFT( π / ) up to A =6 No Core Shell Model, Resonating Group Method 8 Lattice 8 Stetcu, Barrett, van Kolck (2007), (2010); Kirscher, Grießhammer, Shukla, Hofmann (2010); Beane, Savage (2002) 18 / 18

  19. Coulomb corrections / ) 9 Coulomb corrections can be included in EFT( π Coulomb parameter η = M α 2 p Integrals for cross section over finite range θ 1 ≤ θ ≤ θ 2 For T lab = 0 . 1 MeV: η ≈ 0 . 26 ⇒ expand in η L = 8 p A pp � � � � 1 − cos θ 1 � 1 1 A pp 1 + η ln 1 S 0 a S ( µ ) p cos θ 1 − cos θ 2 1 − cos θ 2 C 0 + O ( η ) 2 � 9 Kong and Ravndal (1999) 19 / 18

  20. Comparison with experiment pp scattering experiments (23 o < θ lab < 52 o ) 10 A � pp L ( E = 13 . 6 MeV ) = ( − 0 . 93 ± 0 . 21 ) × 10 − 7 A � pp L ( E = 45 MeV ) = ( − 1 . 50 ± 0 . 22 ) × 10 − 7 From result at E = 13 . 6 MeV: A pp = ( − 1 . 5 ± 0 . 3 ) × 10 − 10 MeV − 1 1 S 0 C 0 Coulomb correction ∼ 3 percent Use to ‘predict’ asymmetry at 45 MeV A � pp L ( E = 45 MeV ) = ( − 1 . 69 ± 0 . 38 ) × 10 − 7 In agreement with experiment 10 Eversheim (1991); Kistryn (1987) 20 / 18

  21. Higher-order corrections At E = 45 MeV center-of-mass momentum p > m π Resum higher-order corrections in PC sector Re-analyze low-energy pp measurement (no Coulomb) A pp ( µ = m π ) = ( − 1 . 1 ± 0 . 25 ) × 10 − 10 MeV − 1 1 S 0 C 0 ∼ 30 % difference “Prediction” for E = 45 MeV A � pp L ( E = 45MeV ) = ( − 2 . 6 ± 0 . 6 ) × 10 − 7 Compare to − 1 . 69 × 10 − 7 : > 50 % difference 21 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend