origin of cosmic rays
play

Origin of Cosmic Rays Part 2: Neutrinos as Cosmic Ray messengers - PowerPoint PPT Presentation

Origin of Cosmic Rays Part 2: Neutrinos as Cosmic Ray messengers Lecture at the J. Stefan Institute Ljubljana within the course: 'Advanced particle detectors and data analysis' Hermann Kolanoski Humboldt-Universitt zu Berlin and DESY


  1. Origin of Cosmic Rays Part 2: Neutrinos as Cosmic Ray messengers Lecture at the J. Stefan Institute Ljubljana within the course: 'Advanced particle detectors and data analysis' Hermann Kolanoski Humboldt-Universität zu Berlin and DESY Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 1

  2. What I want to tell you: want to you – Candidates for cosmic ray accelerators Candidates for cosmic ray accelerators – Neutrinos as messengers for CR sources messengers for CR sources – HE Neutrino telescopes HE Neutrino telescopes – Neutrino detection Neutrino detection – Point source searches – EHE neutrinos and the Muppet Show – Cosmic signals from contained events Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 2

  3. The „non-thermal Universe“ Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 3

  4. Where could particles possibly be accelerated? Hillas diagram Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 4

  5. Active Galactic Nuclei Hubble Heritage Picture of M87 Model of an AGN Origin of the HE cosmic radiation? Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 5

  6. Twisted and Straight Paths Charged Particle Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 6

  7. Neutrino fluxes Cosmic neutrinos should have a hard spectrum F ~ E -2 E -3.7 atmospheric ν F ~ E -3.7 E -2 Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 7

  8. Cosmic Rays, Gammas and Neutrinos CR – ν – γ connection ν π ± accelerator p ν μ ± ν π 0 the γ – ν connection γ target target for hadron accelerators γ CMB 2.7 K → threshold E p ≈ 4 ×10 19 eV Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 8

  9. Three Pillars of HE-Astroparticle Physics Astroparticle • Cosmic Rays CRs • GeV - TeV γ ‘ s • TeV -PeV ν ‘ s TeV γ ‘ s TeV- PeV ν ‘ s 9 Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos

  10. How to detect cosmic high energy neutrinos? quite difficult Absorption small  detection probability small Need something • large • transparent ⇒ water or ice Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 10

  11. Moisej Markov Bruno Pontecorvo M.Ma рков , 1960 : „We propose to install detectors deep in a lake or in the sea and to determine the direction of charged particles with the help of Cherenkov radiation .“ Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 11

  12. Amundsen – Scott Station Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 12

  13. IceCube air shower array IceTop gigaton-scale neutrino telescope • 86 Strings, 2450 m deep • 5160 Optical Modules IceCube • Instrumented: 1 km 3 1000 m • IceTop: 1 km 2 • Installation: 2005-2011 DeepCore Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 13

  14. DOM – Digital Optical Module pressure glas sphere junction cable harness elektronics: high voltage, digitalization, data transfer photomultiplier = light sensor analog transient waveform digitizer (ATWD) 128 Samples in 422 ns Ø 32cm Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 14

  15. Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 15

  16. Hot Water Drilling IceCube EHWD operation: entire drill camp setup, including generators, heater plants, fuel systems, and support workshops. 2 drill towers connect to central plants and leapfrog over holes. Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 16

  17. ... und dann 2450 m tief versenkt Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 17

  18. Deployment 99% of DOMs survive deployment and freeze-in Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 18

  19. Detection of High Energy Neutrinos atmosph. Muons mean free path 1 lightyear ν µ + N → µ + X 10 12 10 10 µ km 10 8 Radius Erdbahn 10 6 atmosph. 10 4 ν µ Earth diameter Neutrinos 10 2 extraterr. MeV GeV TeV PeV EeV ZeV Neutrinos Energy even for neutrinos the Earth becomes opaque above about 1 PeV Earth as filter ⇒ look upward – atm. background becomes less Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 19

  20. Detection of a Neutrino cos θ c = ( β n) -1 θ c ( β =1) ≈ 40 ° θ c Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 20

  21. Was misst IceCube eigentlich? 21 21 Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos

  22. Was misst IceCube eigentlich? Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 22

  23. Particle Signatures Particle Signatures up-going ν µ → point sources CR shower light collection by DOMs in IceTop µ µ ν µ µ bundle background ν e cascade & → all flavours physics ν e Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 23

  24. Neutrino Signals in IceCube e, μ , τ X W CC ν e , μ , τ N ν e , μ , τ X Z NC ν e , μ , τ N Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 24

  25. Neutrino induced muon tracks. • Only ν μ CC interactions • Angular resolution: < 1˚ • Energy measurement: only dE/dx – μ might have lost significant fraction of energy before entering the detector • Effective volume larger than instrumented volume Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 25

  26. Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 26

  27. Muon Energy Loss b(E)E = stochastic losses due to bremsstrahlung critical energy ~E  allows energy reconstruction of muons, not of the neutrinos! Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 27

  28. ν μ Angular and Energy Resolution Moon shadow includes: ν μ energy estimated from dE/dx of muon (bremsstr.) Ljubljana, March 2015 28 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos

  29. Shower-Type Event (Cascade) > ν e + ν μ NC + ν τ interactions > Angular resolution: ≥10˚ > Energy resolution: 15% > Effective volume smaller than instrumented volume Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 29

  30. Cascade Events electron neutrinos produce electrons which deposit there energy locally spherical signal growth Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 30

  31. Angular & energy resolution for shower-type events. > Full likelihood reconstruction of observed waveforms. > ~15% energy resolution. > ≳ 10º angular resolution. > Calibrated by artificial light sources and CR air shower mons. 31 Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos

  32. Search for Diffuse Astrophysical Neutrino Flux Background: Atmospheric Neutrinos ~ 100,000 events per year “prompt” ν’s: from (semi -) leptonic decays of heavy hadrons (mainly charm). Flatter spectrum than “conventional” ν’s ⇒ large uncertainty for astro- ν’s IceCube has now constrained to ~ ERS model (Enberg et al.) E -2 astrophysical? Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 32

  33. Search for Pointsources: The Method 4282 events (small sample) Source ≈ 2 ° - 3 ° background background: atmospheric ν Search for event excess within 2 ° - 3 ° • somewhere in the Northern sky • from list of candidate sources Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 33

  34. The Statistics Problem If you serach long enough we will for sure get an exces at some point Example: “I only believe in statistics Expect 3 events background that I doctored myself” in a search window, but see 7. Winston Churchill How significant is this? <n> = 3 0.25 0.2 w(n>6) = 3,3 % 0.15 0.1 0.05 0 1 2 3 4 5 6 7 8 9 10 Already for about 30 search windows the Significance is determined by ~10000-fold probability to see 7 or more events in any simulation of measurement window is about 60% for background only. Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 34

  35. Point Source Search 2008-2011 IC86+79+59+49 Hottest spot in South: The 4-year skymap: -log10(p) = 5.95 Ra: 296.95 Dec: -75.75 No significant signal Ns: 16.16 Gamma: 2.34 p-value ~9.3% (post trial) Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 35

  36. Improving Statistical Significance • pre-defined source positions • pre-defined time-window • „stacking“ of pre-defined sources „Pre-Definition“ with „multi-messenger“ information of optical, gamma, X-ray, radio telescopes … Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 36

  37. Search for neutrinos which are in time and direction consistent with GRB Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 37

  38. GRB Model Ljubljana, March 2015 H.Kolanoski - 'Origin of Cosmic Rays' - II: Neutrinos 38

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend