optimizing our design ii
play

Optimizing Our Design! (II) Prof. Usagi Recap: Boolean - PowerPoint PPT Presentation

Optimizing Our Design! (II) Prof. Usagi Recap: Boolean Laws/Theorems OR AND Associative laws (a+b)+c=a+(b+c) (a b) c=a (b c) Commutative laws a+b=b+a a b=b a Distributive laws a+(b c)=(a+b) (a+c) a (b+c)=a b+a


  1. Optimizing Our Design! (II) Prof. Usagi

  2. Recap: Boolean Laws/Theorems OR AND Associative laws (a+b)+c=a+(b+c) (a · b) · c=a · (b · c) Commutative laws a+b=b+a a · b=b · a Distributive laws a+(b · c)=(a+b) · (a+c) a · (b+c)=a · b+a · c Identity laws a+0=a a · 1=a Complement laws a+a’=1 a · a’=0 DeMorgan’s Theorem (a + b)’ = a’b’ a’b’ = (a + b)’ Covering Theorem a(a+b) = a+ab = a ab + ab’ = (a+b)(a+b’) = a Consensus Theorem ab+ac+b’c = ab+b’c (a+b)(a+c)(b’+c) = (a+b)(b’+c) Uniting Theorem a (b + b’) = a (a+b) · (a+b’)=a f(a,b,c) = a’b’ + bc + ab’c Shannon’s Expansion f(a,b,c) = a f(1, b, c) + a’ f(0,b,c) 2

  3. Recap: How many “OR”s? • For the truth table shown on the right, what’s the minimum number of “OR” gates we need? A. 1 F(A, B, C) = B. 2 A’B’C’+ A’B’C+ A’BC’ + A’BC + AB’C’+ ABC’ C. 3 = A’B’(C’+C) + A’B(C’+C)+ AC’(B’+B) Input Output A B C = A’B’+ A’B + AC’ D. 4 0 0 0 1 = A’ + AC’ = A’(1+C’)+AC’ Distributive Laws E. 5 0 0 1 1 = A’ + A’C’ + AC’ 0 1 0 1 = A’ + (A’+A)C’ 0 1 1 1 = A’ + C’ 1 0 0 1 How can I know this!!! 1 0 1 0 1 1 0 1 1 1 1 0 3

  4. Recap: Karnaugh maps • Alternative to truth-tables to help visualize adjacencies • Guide to applying the uniting theorem • Steps • Create a 2-D truth table with input variables on each dimension, and adjacent column(j)/row(i) only change one bit in the variable. • Fill each (i,j) with the corresponding result in the truth table • Identify ON-set (all 1s) with size of power of 2 (i.e., 1, 2, 4, 8, … ) and “unite” them terms together (i.e. finding the “common literals” in their minterms) • Find the “minimum cover” that covers all 1s in the graph • Sum with the united product terms of all minimum cover ON-sets 4

  5. Recap: 2-variable K-map example A’ A A 0 1 Input Output B A B 0 0 1 B’ B’ 0 1 1 0 1 1 1 0 1 1 1 0 B 1 1 0 A’ F(A, B) = A’ + B’ 5

  6. Recap: 3-variable K-map? • Reduce to 2-variable K-map — 1 dimension will represent two variables • Adjacent points should differ by only 1 bit • So we only change one variable in the neighboring column • 00, 01, 11, 10 — such numbering scheme is so-called Gray–code A’B’ A’B AB AB’ Input (A, B) Output 0,0 0,1 1,1 1,0 A B C C C’ 0 0 0 1 0 1 1 1 1 0 0 1 1 C’ 0 1 0 1 0 1 1 1 1 1 1 0 0 C 1 0 0 1 A’ 1 0 1 0 1 1 0 1 F(A, B, C) = A’ + C’ 1 1 1 0 6

  7. Poll close in Valid K-Maps • How many of the followings are “valid” K-Maps? (1) (2) (3) 1,1 1,0 0,1 0,0 0,1 1,1 1,0 0,0 0,0 0,1 1,1 1,0 0 0 1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1 0 (4) 0,0 0,1 1,0 1,1 A. 0 0 0 1 1 0 B. 1 1 1 0 0 1 C. 2 D. 3 E. 4 7

  8. Valid K-Maps • How many of the followings are “valid” K-Maps? (1) (2) (3) 1,1 1,0 0,1 0,0 0,1 1,1 1,0 0,0 0,0 0,1 1,1 1,0 0 0 1 1 0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1 0 (4) 0,0 0,1 1,0 1,1 A. 0 0 0 1 1 0 B. 1 1 1 0 0 1 C. 2 D. 3 E. 4 8

  9. Recap: Minimum SOP for a full adder • Minimum number of SOP terms to cover the “Out” function for a one-bit full adder? A. 1 Input Output B. 2 A B Cin Out Cout C. 3 0 0 0 0 0 0 1 0 1 0 D. 4 1 0 0 1 0 E. 5 1 1 0 0 1 A’B’ A’B AB AB’ 0 0 1 1 0 Out(A, B) 0,0 0,1 1,1 1,0 0 1 1 0 1 1 0 1 0 1 0 0 1 0 1 Cin’ 1 1 1 1 1 Cin 1 1 0 1 0 9

  10. Outline • More on Karnaugh maps • Design examples 10

  11. Poll close in Minimum SOP for a full adder • Minimum number of SOP terms to cover the “Cout” function for a one-bit full adder? A. 1 Input Output B. 2 A B Cin Out Cout C. 3 0 0 0 0 0 0 1 0 1 0 D. 4 1 0 0 1 0 E. 5 1 1 0 0 1 0 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 1 1 1 11

  12. Minimum SOP for a full adder • Minimum number of SOP terms to cover the “Cout” function for a one-bit full adder? A. 1 Input Output B. 2 A B Cin Out Cout C. 3 0 0 0 0 0 0 1 0 1 0 D. 4 1 0 0 1 0 E. 5 1 1 0 0 1 A’B’ A’B AB AB’ 0 0 1 1 0 Out(A, B) 0,0 0,1 1,1 1,0 0 1 1 0 1 1 0 1 0 1 0 0 0 1 0 Cin’ 1 1 1 1 1 Cin 1 0 1 1 1 ACin AB BCin 12

  13. Poll close in Minimum SOP terms • What’s the minimum sum-of-products expression of the given truth table? Input Output A B C A. A’B’C’ + A’BC’+ A’BC + AB’C’ 0 0 0 1 B. A’B’C + AB + AC 0 0 1 0 C. AB’C’ + B’C’ 0 1 0 1 0 1 1 1 D. A’B + B’C’ 1 0 0 1 E. A’C’ + A’B + AB’C’ 1 0 1 0 1 1 0 0 1 1 1 0 13

  14. Minimum SOP terms • What’s the minimum sum-of-products expression of the given truth table? Input Output A B C A. A’B’C’ + A’BC’+ A’BC + AB’C’ 0 0 0 1 B. A’B’C + AB + AC 0 0 1 0 C. AB’C’ + B’C’ 0 1 0 1 0 1 1 1 D. A’B + B’C’ 1 0 0 1 E. A’C’ + A’B + AB’C’ 1 0 1 0 A’B’ A’B AB AB’ 1 1 0 0 1 1 1 0 C (A, B) 0,0 0,1 1,1 1,0 B’C’ 0 1 1 0 1 C’ C 1 0 1 0 0 A’B 14

  15. 4-variable K-map • Reduce to 2-variable K-map — both dimensions will represent two variables • Adjacent points should differ by only 1 bit • So we only change one variable in the neighboring column • Use Gray-coding — 00, 01, 11, 10 A’B’ A’B AB AB’ 00 01 11 10 A’B’C’ C’D’ 00 1 0 0 0 F(A, B, C) = A’B’C’+B’CD’ C’D 01 1 0 0 0 CD 11 0 0 0 0 CD’ 10 1 0 0 1 B’CD’ 15

  16. Poll close in 4-variable K-map • What’s the minimum sum-of-products expression of the given K-map? A. B’C’ + A’B’ B. B’C’D’ + A’B’ + B’C’D’ A’B’ A’B AB AB’ C. A’B’CD’ + B’C’ D. AB’ + A’B’ + A’B’D’ 00 01 11 10 E. B’C’ + A’CD’ C’D’ 00 1 0 0 1 C’D 01 1 0 0 1 CD 11 0 0 0 0 CD’ 10 1 1 0 0 16

  17. 4-variable K-map • What’s the minimum sum-of-products expression of the given K-map? A. B’C’ + A’B’ B. B’C’D’ + A’B’ + B’C’D’ A’B’ A’B AB AB’ C. A’B’CD’ + B’C’ D. AB’ + A’B’ + A’B’D’ 00 01 11 10 B’C’ E. B’C’ + A’CD’ C’D’ 00 1 0 0 1 C’D 01 1 0 0 1 CD 11 0 0 0 0 CD’ 10 1 1 0 0 A’CD’ 17

  18. Design Example: 2bit comparator 18

  19. Two-bit comparator Input Output A B C D LT EQ GT 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 A Comparator 0 0 1 1 1 0 0 N1 LT N1 < N2 0 1 0 0 0 0 1 B 0 1 0 1 0 1 0 EQ N1 == N2 0 1 1 0 1 0 0 C 0 1 1 1 1 0 0 GT N1 > N2 N2 1 0 0 0 0 0 1 D 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 1 1 1 0 0 We'll need a 4-variable Karnaugh map for 1 1 0 0 0 0 1 each of the 3 output functions 1 1 0 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 1 0 19

  20. Poll close in LT? Input Output A B C D LT EQ GT • What’s the minimum SOP presentation of LT? 0 0 0 0 0 1 0 A. A’B’D’ + AC’ + BCD 0 0 0 1 1 0 0 0 0 1 0 1 0 0 B. A'B'D + A'C + B’CD 0 0 1 1 1 0 0 C. A'B'C'D' + A'BC'D + ABCD + AB’CD’ 0 1 0 0 0 0 1 0 1 0 1 0 1 0 D. ABCD + AB’CD’ + A’B’C’D’ + A’BC’D 0 1 1 0 1 0 0 0 1 1 1 1 0 0 E. BC'D' + AC' + ABD' 1 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 1 0 20

  21. LT? Input Output A B C D LT EQ GT • What’s the minimum SOP presentation of LT? 0 0 0 0 0 1 0 A. A’B’D’ + AC’ + BCD 0 0 0 1 1 0 0 0 0 1 0 1 0 0 B. A'B'D + A'C + B’CD 0 0 1 1 1 0 0 C. A'B'C'D' + A'BC'D + ABCD + AB’CD’ 0 1 0 0 0 0 1 0 1 0 1 0 1 0 D. ABCD + AB’CD’ + A’B’C’D’ + A’BC’D 0 1 1 0 1 0 0 0 1 1 1 1 0 0 E. BC'D' + AC' + ABD' A’B’ A’B AB AB’ 1 0 0 0 0 0 1 00 01 11 10 1 0 0 1 0 0 1 00 0 0 0 0 C’D’ 1 0 1 0 0 1 0 A’B’D 1 0 1 1 1 0 0 C’D 01 1 0 0 0 1 1 0 0 0 0 1 CD 11 1 1 0 1 1 1 0 1 0 0 1 CD’ 1 1 1 0 0 0 1 10 1 1 0 0 1 1 1 1 0 1 0 B’CD A’C 21

  22. Poll close in GT? Input Output A B C D LT EQ GT • What’s the minimum SOP presentation of GT? 0 0 0 0 0 1 0 A. A’B’D’ + AC’ + BCD 0 0 0 1 1 0 0 0 0 1 0 1 0 0 B. A'B'D + A'C + B’CD 0 0 1 1 1 0 0 C. A'B'C'D' + A'BC'D + ABCD + AB’CD’ 0 1 0 0 0 0 1 0 1 0 1 0 1 0 D. ABCD + AB’CD’ + A’B’C’D’ + A’BC’D 0 1 1 0 1 0 0 0 1 1 1 1 0 0 E. BC'D' + AC' + ABD' 1 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 1 1 1 0 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 0 1 0 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend