optimizing re me dia tio n a ppro a c he s optimizing re
play

Optimizing re me dia tio n a ppro a c he s Optimizing re me dia - PowerPoint PPT Presentation

Optimizing re me dia tio n a ppro a c he s Optimizing re me dia tio n a ppro a c he s a t mine site s: ho w unde rsta nding b io g e o c he mic a l pro c e sse s a nd b io g e o c he mic a l pro c e sse s a nd mo de ling c a n g uide


  1. Optimizing re me dia tio n a ppro a c he s Optimizing re me dia tio n a ppro a c he s a t mine site s: ho w unde rsta nding b io g e o c he mic a l pro c e sse s a nd b io g e o c he mic a l pro c e sse s a nd mo de ling c a n g uide mine tre a tme nt K a te Ca mpb e ll US Ge o lo g ic a l Surve y Bo ulde r, CO

  2. Me ta l tre a tme nt stra te g ie s Me ta l tre a tme nt stra te g ie s  Pump and Treat/ Conventional water treatment facilities treatment facilities  Groundwater and/or surface water treatment  Ion exchange, reverse osmosis, lime addition, etc.  Constructed wetlands, covers  Surface water Photo credit: Mike Hay  Mine wastes  I In Situ approaches - groundwat Sit ter  Reduction [U(VI)  U(IV)]  Biological: Organic carbon injection  Chemical: Sulfide injection  Chemical: Sulfide injection  Mineral Precipitation  Soluble phosphate injection ARCADIS, 2013  I In Situ : Reacti Sit tive B Barri iers

  3. Me ta l mo b ility: impo rta nc e o f re do x Me ta l mo b ility: impo rta nc e o f re do x pH E ffe c t o f pH – re do x– lig a nds o n me ta l mo b ility Me ta l Me ta l- 1. E q uilib rium o xida tio n b inding sta te lig a nds g 2. Dise q uilib rium Dise q uilib rium yxwvutsrponmlihgfedcbaSRPOMLKIHGFDA Oppo rtunity fo r b io tic pro c e sse s K ine tic s o f re a c tio ns impo rta nt Mineral precipitation/dissolution and precipitation/dissolution and adsorption Mining and r e me diation ofte n pe r pe r tur tur bs r bs r e dox state of syste m e dox state of syste m

  4. F F unda me nta l pro c e sse s a nd mo de ling n da me nta l pro c e sse s a nd mo de ling  I mpro ve mo de ling b y inc re a sing funda me nta l b io g e o c he mic a l pro c e sse s  I de ntify ke y re a c tio ns  Re a c tio n K ine tic s vs. e q uilib rium  Mic ro b ia l pro c e sse s  Pre c ipita tio n

  5. Code: PHREEQC Bio g e o c he mic a l mo de ling

  6. Co mple xity: la b o ra to ry  fie ld Co mple xity: la b o ra to ry  fie ld F F i ld ie ld L a b o ra to ry Ba tc h re a c to rs Ba tc h re a c to rs yxwvutsrponmlihgfedcbaSRPOMLKIHGFDA Pure c ulture s (b a c te ria ) I n situ e xpe rime nts Synthe tic wa te r Pure mine ra l pha se s Pilo t a nd full- Co lumn e xpe rime nts sc a le Mic ro b ia l c o mmunity Mic ro b ia l c o mmunity tre a tme nt/ re Site -spe c ific so lids me dia tio n He te r He te r oge ne ity oge ne ity Ke y pr oc e sse s R ate s and c omple xity

  7. Ca se studie s Ca se studie s  Ca se study 1: Bio re me dia tio n o f a ura nium-c o nta mina te d a q uife r  Ca se study 2: Re mo va l o f disso lve d ura nium a nd surfa c e pa ssiva tio n o f o re b y pho spha te a me ndme nt  Ca se study 3: Ac id mine dra ina g e (AMD) pipe line sc a ling

  8. Ca se study 1: Bio re me dia tio n a t Rifle , CO Ca se study 1: Bio re me dia tio n a t Rifle CO ) + sulfa te  F F e (I ( ) I I e (I ( ) I )-sulfide s ) (a q )  U(I U(VI V) (s)

  9. zyxwvutsrqponmlkihgfedcbaXWVUTSRPONMLKJIHGFEDCBA In situ e xpe rime nt: U(I In situ e xpe rime nt: U(I V) re o xida tio n V) re -o xida tio n ra te s windows UO 2 Bio ma ss, o the r surfa c e re a c tio ns re ta rd o xida tive disso lutio n Ca mpb e ll, K M, e t a l., E S&T 2011, Ba rg a r e t a l., PNAS 2013

  10. F ie ld-sc a le Bio re me dia tio n Mic ro b ia l U(VI Mic ro b ia l U(VI ) F ), F e (I e (I I I I I ), ) sulfa te re duc tio n Re mo va l: U, V, Se I I nc re a se : As A Geobacter spe c ie s we re SRB do mina nt during F e (I I I ) Geobacter a nd U(VI ) re duc tio n Po pula tio n shifte d to p sulfa te re duc e rs Anderson et al., AEM 2003

  11. Ca se study 2: Pho spha te a me ndme nt 2 O  Ca 5 (PO 4 ) 3 OH + 4H 5Ca +2 + 3HPO 4 -2 + H + Hydr oxylapatite -3  H + + 2UO 2 +2 + 2PO 4 2H 2 (UO 2 ) 2 (PO 4 ) 2 Autinite 2 4 2 2 2 4 2  Pho spha te a me ndme nt e ffe c tive a s U(VI U(VI ) tre a t ) t tme nt t  Ca n Ca -PO4 pre c ipita tio n pa ssiva te pa ssiva te surfa c e o f U(I surfa c e o f U(I V) o re s? V) o re s?

  12. Ra te s f re c ipita tio n a nd o xida tio n Ra te s o f pre c ipita tio n a nd o xida tio n o p Ne xt ste p: U o re c o lumn studie s

  13. Ura nium re me dia tio n: c a se study 1&2 U i di ti t d 1&2  Bio re me dia tio n – re duc ing c o nditio ns  Cha lle ng ing to c o ntro l mic ro b ia l c o mmunity  Pho spha te a me ndme nt – o xidizing o r re duc ing c o nditio ns  Pa ssiva tio n o f U(I V) surfa c e s ma y pre ve nt c o ntinue d o xida tio n  Co mb ine d b io re me dia tio n/ pho spha te a me ndme nt  Applic a tio n:  I n situ re c o ve ry (I SR mine s)  Co nve ntio na l mining  L L e g a c y site s e g a c y site s

  14. Ca se study 3: a c id mine dra ina g e Ca se study 3: a c id mine dra ina g e Sac r Sac r ame nto ame nto L e viathan Mine Ir on Mtn Mi Mine Map Ar e a

  15. Pre c ipita tio n in AMD pipe line s – “sc a le ” Iron Mountain Mine Leviathan Mine Pipe sc a le re q uire s c o stly c le a n-o ut a t I Pipe sc a le re q uire s c o stly c le a n o ut a t I MM e ve ry 2 4 ye a rs a nd MM e ve ry 2-4 ye a rs, a nd c o mple te re pla c e me nt o f pipe s a t L M e ve ry ye a r – c ommon pr oble m in AMD pipe line s

  16. Wa te r c he mistry a t I ro n Mo unta in Mine pH = 0.5-0.8 F e = 12,000 mg / L Sulfa te = 49,000 mg / L F e (I I I ) F e (I I ) F e (T ) SS2 18 mg / L g pH 2.96 950 mg / L 1111 mg / L pH 2.62 1034 mg / L 1028 mg / L pH 2.63 pH 2.71 977 mg / L pH 2.73 pH 2 73 962 mg / L 962 mg / L pH 2.74

  17. Me c ha nism o f sc a le fo rma tio n only = Bio tic F e (I I ) o xida tio n Wate r Unfilte r e d + sc ale = Bio tic F e (I I ) o xida tio n, e ffe c t Wate r wate r o f sc a le 0.1 μ m ol = Ab io tic F e (I I ) Contr filtration o xida tio n o xida tio n Iron Mountain Mine and Leviathan Mine and Leviathan Mine samples

  18. Me c ha nism o f sc a le fo rma tio n Dissolve d F e (II) 30 Ab io tic 25 c o ntro ls 20 20 e (II) mM 15 Unfilte re d wa te r wa te r F 10 5 Unfilte re d wa te r + sc a le Unfilte re d wa te r + sc a le 0 0 20 40 60 80 100 ti time (hour (h s) ) F e (II) oxidation pH< 5 is a biotic pr oc e ss

  19. Sc a le c ha ra c te riza tio n XRD, SE M de io nize d wa te r L e ast aggr e ssive We t c he mic a l e xtra c tio ns 0.2M a mmo nium o xa la te 0.5M HCl T o ta l e le me nta l dig e stio n 0.5M HCl 0.5M hydro xy yla mine HCl C a nd N a na l sis C a nd N a na lysis M Most aggr t e ssive i Mic ro b ia l c o mmunity: Mic ro b ia l c o mmunity: • 16S rDNA b y 454-pyro se q ue nc ing Sc hwe r tmannite e 8 O 8 (OH) 6 SO 4 ) and • F e -o xidizing b a c te ria (MPNs) (F Goe thite (F e OOH) reference compounds

  20. Sc a le c ha ra c te riza tio n Sc hwe r tmannite (br oad pe ak) + goe thite c o rundum inte rna l sta nda rd % Goe thite Goe thite Sc hwe rt. SS12 98.9% SS10 97.7% SS8 SS8 97.5% SS6 SS6 98.1% Bulk mineralogy is similar in all scale: Prima rily Sc hwe r Prima rily Sc hwe r tmannite [ide a l tmannite [ide a l e 8 O 8 (OH) 6 SO 4 ] with c o mpo sitio n: F minor Goe thite [F e OOH]

  21. Ge o c he mic a l mo de l – b a tc h e xpe rime nts 0.03 0 03 3 0.025 2.8 M) 0 02 0.02 e (II) (M 2.6 pH 0.015 2.4 0.01 zyxwvutsrqponmlkihgfedcbaXWVUTSRPONMLKJIHGFEDCBA F 2.2 0.005 0 2 0.03 0 50 100 150 200 250 0 50 100 150 200 250 0.025 time (hour s) • Kine tic s for ) (M) Kine tic s for mic r mic r obial F obial F e (II) e (II) 0 02 0.02 oxidation 0.015 e (T - Ba se d o n Mic ha e lis-Me nte n 0.01 F e nzyme kine tic s e nzyme kine tic s - K ine tic s de pe nds o n sub stra te 0.005 (F e (I I )) a nd c e ll c o nc e ntra tio n 0 • Kine tic ally c ontr Kine tic ally c ontr olle d olle d 0 50 50 100 100 150 150 200 200 250 250 sc hwe r tmannite pr e c ipitation time (hour s)

  22. Ge o c he mic a l mo de l – fie ld o b se rva tio ns -03 SS12 03 SS12 3.0E 3 0E “Slug”- style inje c tion of Dotted = field data c onse r vative tr ac e r L i Solid = model SS10 2.5E -03 SS8 • T T ra ve l time s ra ve l time s • Dispe rsivity SS6 2.0E -03 • 3 flo w re g ime s: i (M) SS2 1 5E 1.5E -03 03 • 75 g pm (4 7 L 75 g pm (4.7 L / s) / s) L • 150 g pm (9.5 L / s) / s) 1.0E -03 • 1075 g pm (67.8 L 5.0E -04 0.0E +00 0 20 40 60 80 100 120 time (min) > Va ria b le ve lo c ity in e a c h se c tio n o f pipe line > Va ria b le ve lo c ity in e a c h se c tio n o f pipe line

  23. Re me dia tio n te st 1: inc re a se d flo w 90% 80% 70% 60% e (II) ) 50% PW3 o nly 75 g pm % F 150 g pm PW3 o nly 40% 1075 g pm PW3 + SCRR 30% 30% ywvutsrponmlkjihgfedcbaWUTSMLIHGFEDC 20% 10% 0% SS12 SS10 SS8 SS6 SS2 • • Do ub ling flo w fro m 75 to 150 g pm slig htly de c re a se d a mo unt o xidize d Do ub ling flo w fro m 75 to 150 g pm slig htly de c re a se d a mo unt o xidize d • Hig he st flo w ra te (1075 g pm) slo we d F e (I I ) o xida tio n  Mode l c an be use d to simulate e ffe c t of r unning pipe line at highe r flow r flow r ate s ate s  E ffe c t on tr e atme nt plant ope r ations

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend