hda case study
play

HDA case study S. Skogestad, May 2006 Self- Self Thanks to - PowerPoint PPT Presentation

-Optimizing Control Optimizing Control HDA case study S. Skogestad, May 2006 Self- Self Thanks to Antonio Arajo 1 Process Description -Optimizing Control Optimizing Control Benzene production from thermal-dealkalination of


  1. -Optimizing Control Optimizing Control HDA case study • S. Skogestad, May 2006 Self- Self • Thanks to Antonio Araújo 1

  2. Process Description -Optimizing Control Optimizing Control • Benzene production from thermal-dealkalination of toluene (high- temperature, non-catalytic process). • Main reaction: CH 3 Self- Self + H 2 → + CH 4 + Heat Benzene Toluene • Side reaction + H 2 → 2 ← Diphenyl • Excess of hydrogen is needed to repress the side reaction and coke formation. • References for HDA process: • McKetta (1977) – first reference on the process; • Douglas (1988) – design of the process; • Wolff (1994) – discuss the operability of the process. • No references on the optimization of the process for control structure design purposes. 2

  3. -Optimizing Control Optimizing Control Process Description Purge (H 2 + CH 4 ) Compressor Self- Self H 2 + CH 4 Toluene Quench Mixer FEHE Furnace PFR Separator Cooler CH 4 Toluene Benzene Toluene Stabilizer Benzene Column Column Diphenyl 3

  4. -Optimizing Control Optimizing Control Steady-state operational degrees of freedom Process units DOF External feed streams (feed rate) 2 Heat exchangers duties (including 1 furnace) 3 Self- Self Splitters 2 Compressor duty 1 Adiabatic flash (*) 0 Gas phase reactor (*) 0 Distillation columns 6 14 Equality constraint Quencher outlet temperature -1 Remaining degrees of freedom at steady state 13 (*) No adjustable valves (assumed fully open valve before flash) 4

  5. -Optimizing Control Optimizing Control Steady-state operational degrees of freedom 8 7 Purge ( H 2 + CH 4 ) Compressor 1 Furnace 3 Self- Self H 2 + CH 4 Quencher Toluene Mixer FEHE Reactor 4 5 2 6 Cooler 13 11 9 Separator Benzene CH 4 Toluene Toluene Benzene Stabilizer Column Column Diphenyl 14 12 10 5

  6. -Optimizing Control Optimizing Control Cost Function and Constraints • The following profit is maximized (Douglas’s EP): -J = p ben D ben – p tol F tol – p gas F gas – p fuel Q fuel – p cw Q cw – p power W power - p steam Q steam + Σ (p v,i F v,i ) Self- Self • Constraints during operation: – Production rate: D ben ≥ 265 lbmol/h. – Hydrogen excess in reactor inlet: F Hyd / (F ben + F tol + F diph ) ≥ 5. – Bound on toluene feed rate: F tol ≤ 300 lbmol/h. – Reactor pressure: P reactor ≤ 500 psia. – Reactor outlet temperature: T reactor ≤ 1300 °F. – Quencher outlet temperature: T quencher = 1150 °F. – Product purity: x Dben ≥ 0.9997. – Separator inlet temperature: 95 °F ≤ T flash ≤ 105 °F. – + Distillation constraints • Manipulated variables are bounded. 6

  7. -Optimizing Control Optimizing Control Disturbances Disturbance Unit Nominal Lower Upper Toluene feed flow rate lbmol/h 300 285 315 Self- Self Gas feed composition mol% of H 2 95 90 100 Benzene price $/lbmol 9.04 8.34 9.74 Energetic value of fuel to the furnace MBTU/lbmol 0.1247 0.12 0.13 7

  8. Optimizing Control -Optimizing Control Optimization 6,5 6 5,5 Benzene price Profit (M$/year) 5 Self- Self 4,5 4 3,5 3 2,5 2 l a ) ) n ) ) ) ) r r ) ) r r r r e e r r i e e m e e e e w p w p w p w p o p o p p o p o o N u l u u l u ( l ( ( l ( ( ( ( e ( e e n e l n c l c t e t e o a o i a u i u r i r r i p r t p f t f i i d s d f s e f o e e o o e o n n e p e e p e e e f m f u m z u z e e l n o n a l o n a n e e v c e v c e B B u d u c d c l e l i o i e o t t e e e T e T g f f g s r s r e a e a n n G G E E 8 Disturbance

  9. Optimization -Optimizing Control Optimizing Control • 14 steady-state degrees of freedom • 10 active constraints: 1. Pure toluene feed rate ( UB ) 2. By-pass valve around FEHE ( LB ) Self- Self 3. Reactor inlet hydrogen-aromatics ratio ( LB ) 4. Flash inlet temperature ( LB ) 5. Methane mole fraction in stabilizer bottom ( UB ) 6. Benzene mole fraction in stabilizer distillate ( UB ) 7. Toluene mole fraction in benzene column bottom ( LB ) 8. Benzene mole fraction in benzene column distillate ( LB ) 9. Diphenyl mole fraction in toluene column bottom ( LB ) ( LB ) 10.Toluene mole fraction in toluene column distillate • 1 equality constraint: 11. Quencher outlet temperature • 3 remaining unconstrained degrees of freedom. 9

  10. -Optimizing Control Optimizing Control Optimization – Active Constraints Purge ( H 2 + CH 4 ) Compressor Equality Self- 11 2 Furnace Self H 2 + CH 4 Quencher Toluene Mixer FEHE Reactor 3 1 Cooler 8 6 10 4 Separator Benzene CH 4 Toluene Toluene Benzene Stabilizer Column Column Diphenyl 10 9 7 5

  11. Optimizing Control -Optimizing Control Candidate Controlled Variables • Candidate controlled variables: – Pressure differences; – Temperatures; – Compositions; – Heat duties; Self- Self – Flow rates; – Combinations thereof. • 138 candidate controlled variables might be selected. • 14 degrees of freedom. • Number of different sets of controlled variables: 138 138! 18 5.3 10 14 124!14! • 10 active constraints + 1 equality constraint leaving 3 DOF: 127 127! 333,375 3 124!3! • What should we do with the remaining 3 DOF? 11 – Self-optimizing control!!!

  12. Analysis of the linear model -Optimizing Control Optimizing Control a. All measurements ( σ (G full ) = 1.58): Branch-and-bound: σ (G 3x3 ) = 0.864 I Quencher outlet benzene mole fraction Self- Self II Compressor power III Liquid (cooling) flow to quencher Branch-and-bound: σ (G 3x3 ) = 0.853 Separator liquid outlet benzene mole fraction II Compressor power Liquid (cooling) flow to quencher III Branch-and-bound: σ (G 3x3 ) = 0.852 Benzene mole fraction in stabilizer bottom II Compressor power Liquid (cooling) flow to quencher III 12

  13. Optimal self-optimizing variables -Optimizing Control Optimizing Control II W Purge ( H 2 + CH 4 ) Compressor x benzene I 11 2 Furnace Self- Self H 2 + CH 4 Quencher Toluene Mixer FEHE Reactor Flow 1 1 III Cooler 10 8 6 4 Separator Benzene CH 4 Toluene Toluene Benzene Stabilizer Column Column Diphenyl 13 9 7 5

  14. Analysis of the linear model -Optimizing Control Optimizing Control b. Separator pressure constant ( σ (G full ) = 1.50): Branch-and-bound: σ (G 3x3 ) = 0.835 I Quencher outlet benzene mole Self- Self fraction II Compressor power Separator pressure III’ 14

  15. Alternative self-optimizing variables -Optimizing Control Optimizing Control II W Purge ( H 2 + CH 4 ) Compressor x benzene I 11 2 Furnace Self- Self H 2 + CH 4 Quencher Toluene Mixer FEHE Reactor 1 1 p III’ Cooler 10 8 6 4 Separator Benzene CH 4 Toluene Toluene Benzene Stabilizer Column Column Diphenyl 15 9 7 5

  16. -Optimizing Control Optimizing Control Conclusion steady-state analysis • Many similar alternatives in terms of loss • Need to consider dynamics (Input-output controllability analysis): Self- Self – RHP-zeros – RHP-poles – Input saturation – Easy of implementation (decentralized control of final 3x3 supervisory control problem)! • Now: Consider “bottom-up” design of control system 16

  17. -Optimizing Control Optimizing Control Bottom-up design of control system • Start with stabilizing control Self- Self – Levels – Pressure – Temperatures • Normally start with fastest loops (often pressure) – but let is start with levels 17

  18. “Bottom-up”: Proposed Control Structure -Optimizing Control Optimizing Control Stabilizing Control: Control 7 liquid levels Purge ( H 2 + CH 4 ) Compressor Self- Self Furnace H 2 + CH 4 Quencher Toluene Mixer FEHE Reactor Cooler LC Separator LC LC LC Benzene Toluene CH 4 Toluene Benzene Stabilizer Column Column LC LC LC 18 Diphenyl LV-configuration assumed for columns

  19. -Optimizing Control Optimizing Control Avoiding “Drift” I – 4 Pressure loops Pressure with purge Purge ( H 2 + CH 4 ) Compressor Self- Self Furnace H 2 + CH 4 Quencher Toluene Mixer FEHE Reactor Cooler PC LC Separator PC PC PC LC LC LC Benzene Toluene CH 4 Toluene Benzene Stabilizer Column Column LC LC LC 19 Diphenyl Column pressures are given

  20. -Optimizing Control Optimizing Control Avoiding “Drift” II – 4 Temperature loops Purge ( H 2 + CH 4 ) Compressor Self- Self Furnace H 2 + CH 4 Quencher Toluene T s Mixer FEHE Reactor TC p s Cooler PC LC Separator PC PC PC LC LC LC Benzene Toluene CH 4 TC TC Toluene Benzene Stabilizer Column Column TC LC LC LC 20 Diphenyl

  21. -Optimizing Control Optimizing Control Now suggest pairings for supervisory control Self- Self 21

  22. -Optimizing Control Optimizing Control Control of 11 active constraints. Purge ( H 2 + CH 4 ) Compressor Self- Self SP CC Furnace SP SP TC FC H 2 + CH 4 Quencher Toluene T s Mixer FEHE Reactor TC p s FC Cooler PC SP LC SP TC Separator PC PC PC LC LC LC Benzene Toluene CH 4 SP SP SP CC TC CC CC TC Toluene Benzene Stabilizer Column Column SP TC CC SP SP CC CC LC LC LC 3 DOF left 22 Diphenyl

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend