optimization of lowest robin eigenvalues on 2 manifolds
play

Optimization of lowest Robin eigenvalues on 2-manifolds and - PowerPoint PPT Presentation

Optimization of lowest Robin eigenvalues on 2-manifolds and unbounded cones Vladimir Lotoreichik in collaboration with M. Khalile Czech Academy of Sciences, e near Prague OTKR, Vienna, 19.12.2019 V. Lotoreichik (NPI CAS) Optimization on


  1. Optimization of lowest Robin eigenvalues on 2-manifolds and unbounded cones Vladimir Lotoreichik in collaboration with M. Khalile Czech Academy of Sciences, Řež near Prague OTKR, Vienna, 19.12.2019 V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 1 / 19

  2. Outline 1 Motivation & background 2 Optimization on 2-manifolds 3 Optimization on unbounded cones V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 2 / 19

  3. Outline 1 Motivation & background 2 Optimization on 2-manifolds 3 Optimization on unbounded cones V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 3 / 19

  4. The Robin eigenvalue problem V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 4 / 19

  5. The Robin eigenvalue problem Ω ⊂ R d – bounded domain with sufficiently smooth (at least Lipschitz) ∂ Ω. V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 4 / 19

  6. The Robin eigenvalue problem Ω ⊂ R d – bounded domain with sufficiently smooth (at least Lipschitz) ∂ Ω. β ∈ R – coupling constant. V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 4 / 19

  7. The Robin eigenvalue problem Ω ⊂ R d – bounded domain with sufficiently smooth (at least Lipschitz) ∂ Ω. β ∈ R – coupling constant. The spectral problem − ∆ u = λ u , in Ω , ∂ ν u + β u = 0 , on ∂ Ω , V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 4 / 19

  8. The Robin eigenvalue problem Ω ⊂ R d – bounded domain with sufficiently smooth (at least Lipschitz) ∂ Ω. β ∈ R – coupling constant. The spectral problem − ∆ u = λ u , in Ω , ∂ ν u + β u = 0 , on ∂ Ω , The Robin Laplacian on Ω � � H 1 (Ω) ∋ u �→ |∇ u | 2 d x + β | u | 2 d σ β, Ω in L 2 (Ω) H β, Ω = H ∗ = ⇒ Ω ∂ Ω V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 4 / 19

  9. The Robin eigenvalue problem Ω ⊂ R d – bounded domain with sufficiently smooth (at least Lipschitz) ∂ Ω. β ∈ R – coupling constant. The spectral problem − ∆ u = λ u , in Ω , ∂ ν u + β u = 0 , on ∂ Ω , The Robin Laplacian on Ω � � H 1 (Ω) ∋ u �→ |∇ u | 2 d x + β | u | 2 d σ β, Ω in L 2 (Ω) H β, Ω = H ∗ = ⇒ Ω ∂ Ω Purely discrete spectrum λ β 1 (Ω) ≤ λ β 2 (Ω) ≤ · · · ≤ λ β ( β · λ β k (Ω) ≤ . . . 1 (Ω) ≥ 0) V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 4 / 19

  10. Optimization of λ β 1 (Ω) V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 5 / 19

  11. Optimization of λ β 1 (Ω) The ball (the disk) is: 1 minimizer ( β > 0, | Ω | = const ) Bossel-86, Daners-06 2 maximizer ( β < 0, | ∂ Ω | = const , d =2), Antunes-Freitas-Krejčiřík-17 3 maximizer ( β < 0, | ∂ Ω | = const , Ω – convex, d ≥ 3). Bucur-Ferone-Nitsch-Trombetti-18, Vikulova-19 V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 5 / 19

  12. Optimization of λ β 1 (Ω) The ball (the disk) is: 1 minimizer ( β > 0, | Ω | = const ) Bossel-86, Daners-06 2 maximizer ( β < 0, | ∂ Ω | = const , d =2), Antunes-Freitas-Krejčiřík-17 3 maximizer ( β < 0, | ∂ Ω | = const , Ω – convex, d ≥ 3). Bucur-Ferone-Nitsch-Trombetti-18, Vikulova-19 The ball (the disk) is not an optimizer if ( β < 0, | Ω | = const , d ≥ 2), Freitas-Krejčiřík-15 V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 5 / 19

  13. Optimization of λ β 1 (Ω) The ball (the disk) is: 1 minimizer ( β > 0, | Ω | = const ) Bossel-86, Daners-06 2 maximizer ( β < 0, | ∂ Ω | = const , d =2), Antunes-Freitas-Krejčiřík-17 3 maximizer ( β < 0, | ∂ Ω | = const , Ω – convex, d ≥ 3). Bucur-Ferone-Nitsch-Trombetti-18, Vikulova-19 The ball (the disk) is not an optimizer if ( β < 0, | Ω | = const , d ≥ 2), Freitas-Krejčiřík-15 The analogue of (1) for manifolds: Chami-Ginoux-Habib-19 V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 5 / 19

  14. Optimization of λ β 1 (Ω) The ball (the disk) is: 1 minimizer ( β > 0, | Ω | = const ) Bossel-86, Daners-06 2 maximizer ( β < 0, | ∂ Ω | = const , d =2), Antunes-Freitas-Krejčiřík-17 3 maximizer ( β < 0, | ∂ Ω | = const , Ω – convex, d ≥ 3). Bucur-Ferone-Nitsch-Trombetti-18, Vikulova-19 The ball (the disk) is not an optimizer if ( β < 0, | Ω | = const , d ≥ 2), Freitas-Krejčiřík-15 The analogue of (1) for manifolds: Chami-Ginoux-Habib-19 1 st main objective To generalize (2) for 2-manifolds. V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 5 / 19

  15. Unbounded cones V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 6 / 19

  16. Unbounded cones m ⊂ S 2 – a bounded, simply-connected, domain with C 2 -smooth boundary. V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 6 / 19

  17. Unbounded cones m ⊂ S 2 – a bounded, simply-connected, domain with C 2 -smooth boundary. The cone Λ m ⊂ R 3 Λ m := R + × m (in the spherical coordinates). V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 6 / 19

  18. Unbounded cones m ⊂ S 2 – a bounded, simply-connected, domain with C 2 -smooth boundary. The cone Λ m ⊂ R 3 Λ m := R + × m (in the spherical coordinates). Λ m m V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 6 / 19

  19. The Robin Laplacian on unbounded cones V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 7 / 19

  20. The Robin Laplacian on unbounded cones β < 0 – coupling constant. V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 7 / 19

  21. The Robin Laplacian on unbounded cones β < 0 – coupling constant. The Robin Laplacian on Λ m � � H 1 (Λ m ) ∋ u �→ |∇ u | 2 d x + β | u | 2 d σ β, Λ m in L 2 (Λ m ) H β, Λ m =H ∗ ⇒ Λ m ∂ Λ m V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 7 / 19

  22. The Robin Laplacian on unbounded cones β < 0 – coupling constant. The Robin Laplacian on Λ m � � H 1 (Λ m ) ∋ u �→ |∇ u | 2 d x + β | u | 2 d σ β, Λ m in L 2 (Λ m ) H β, Λ m =H ∗ ⇒ Λ m ∂ Λ m H β, Λ m ≃ β 2 H − 1 , Λ m = ⇒ H Λ m := H − 1 , Λ m . V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 7 / 19

  23. Spectral properties of H Λ m V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 8 / 19

  24. Spectral properties of H Λ m Proposition ( Pankrashkin-16 ) σ ess (H Λ m ) = [ − 1 , ∞ ) . # σ d (H Λ m ) = ∞ if | m | < 2 π V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 8 / 19

  25. Spectral properties of H Λ m Proposition ( Pankrashkin-16 ) σ ess (H Λ m ) = [ − 1 , ∞ ) . # σ d (H Λ m ) = ∞ if | m | < 2 π The eigenvalues of H Λ m λ 1 (Λ m ) ≤ λ 2 (Λ m ) ≤ · · · ≤ λ k (Λ m ) ≤ · · · ≤ − 1 . arise in the leading order of the large coupling asymptotics ( β → −∞ ) for the Robin eigenvalues on a bounded domain with a conical singualarity. V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 8 / 19

  26. Spectral properties of H Λ m Proposition ( Pankrashkin-16 ) σ ess (H Λ m ) = [ − 1 , ∞ ) . # σ d (H Λ m ) = ∞ if | m | < 2 π The eigenvalues of H Λ m λ 1 (Λ m ) ≤ λ 2 (Λ m ) ≤ · · · ≤ λ k (Λ m ) ≤ · · · ≤ − 1 . arise in the leading order of the large coupling asymptotics ( β → −∞ ) for the Robin eigenvalues on a bounded domain with a conical singualarity. 2 nd main objective To obtain an isoperimetric inequality for λ 1 (Λ m ). V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 8 / 19

  27. Outline 1 Motivation & background 2 Optimization on 2-manifolds 3 Optimization on unbounded cones V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 9 / 19

  28. Geometric setting V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 10 / 19

  29. Geometric setting The class of 2-manifolds M – compact, simply-connected, C ∞ -smooth two-dimensional manifold with C 2 -boundary ∂ M . V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 10 / 19

  30. Geometric setting The class of 2-manifolds M – compact, simply-connected, C ∞ -smooth two-dimensional manifold with C 2 -boundary ∂ M . M is diffeomorphic to the unit disk in R 2 V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 10 / 19

  31. Geometric setting The class of 2-manifolds M – compact, simply-connected, C ∞ -smooth two-dimensional manifold with C 2 -boundary ∂ M . M is diffeomorphic to the unit disk in R 2 K : M → R – Gauss curvature of M . V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 10 / 19

  32. Geometric setting The class of 2-manifolds M – compact, simply-connected, C ∞ -smooth two-dimensional manifold with C 2 -boundary ∂ M . M is diffeomorphic to the unit disk in R 2 K : M → R – Gauss curvature of M . − ∆ & ∇ – stand for the Laplace-Beltrami operator and the gradient on M V. Lotoreichik (NPI CAS) Optimization on manifolds 19.12.2019 10 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend