optimization in meshed gas networks
play

Optimization in Meshed Gas Networks R udiger Schultz (University of - PowerPoint PPT Presentation

Optimization in Meshed Gas Networks R udiger Schultz (University of Duisburg-Essen) with Holger Heitsch, Ren e Henrion Weierstra Institute Berlin , and Matthias Claus, Ralf Gollmer, Kai Sp urkel UDE and Klaus Altmann Free University


  1. Topics 1. Gas Flow ◮ Stationary gas flow in pipeline systems under additional assumptions: passive network, i.e., without components influencing gas flow actively (compressors, valves); horizontal pipes; constant friction coefficients. 2. Probabilistic Nomination Validation ◮ The probability of those balanced injection and random withdrawals, for which there exist arc flows and bounded node pressures fulfilling Kirchhoff’s Laws ?? 3. Explicit Feasibility Representation by Symbolic Computation ◮ Fundamental cycles of the network imply feasibility system of “privileged” multivariate polynomials of degree two; variable elimination; (reverse) lexicographic order; parametric system - comprehensive Gr¨ obner Base; Shape Lemma.

  2. 4. Spherical-Radial Decomposition of Gaussian Distribution ◮ Splits integration over Gaussian Laws into integration of uniform distributionn over unit sphere (sampling) and a χ 2 -distribution in dimension one;

  3. 4. Spherical-Radial Decomposition of Gaussian Distribution ◮ Splits integration over Gaussian Laws into integration of uniform distributionn over unit sphere (sampling) and a χ 2 -distribution in dimension one; 5. Performance Gains in Quasi-Monte-Carlo Sampling ◮ Sampling (of Probabilities, Function Values and Gradients) with implicit representation vs. Sampling with explicit formula vs. Comprehensive Gr¨ obner bases calculation within Sampling on the Unit Sphere: Initial experiments with probabilities → variance reduction by two decimals

  4. Graph Theoretic Setting ◮ Gas network model = connected, directed (simple) graph G = ( V , E ) ,

  5. Graph Theoretic Setting ◮ Gas network model = connected, directed (simple) graph G = ( V , E ) , ◮ with node-arc incidence matrix A + and in/out nomination vector b + .

  6. Graph Theoretic Setting ◮ Gas network model = connected, directed (simple) graph G = ( V , E ) , ◮ with node-arc incidence matrix A + and in/out nomination vector b + . ◮ Kirchhoff 1 (mass preservation at nodes) A + q b + = with q ∈ R | E | denoting the gas flow in the pipes.

  7. Graph Theoretic Setting ◮ Gas network model = connected, directed (simple) graph G = ( V , E ) , ◮ with node-arc incidence matrix A + and in/out nomination vector b + . ◮ Kirchhoff 1 (mass preservation at nodes) A + q b + = with q ∈ R | E | denoting the gas flow in the pipes. ◮ after deletion of the first row/component of A + , b + (slack or reference or root node) Aq = b gives the matrix A with full rank and the vector b . Now “simplex-like” b iff q B = ( A B ) − 1 b − ( A B ) − 1 A N q N Aq = b iff A B q B + A N q N =

  8. Graph Theoretic Setting ◮ Gas network model = connected, directed (simple) graph G = ( V , E ) , ◮ with node-arc incidence matrix A + and in/out nomination vector b + . ◮ Kirchhoff 1 (mass preservation at nodes) A + q b + = with q ∈ R | E | denoting the gas flow in the pipes. ◮ after deletion of the first row/component of A + , b + (slack or reference or root node) Aq = b gives the matrix A with full rank and the vector b . Now “simplex-like” b iff q B = ( A B ) − 1 b − ( A B ) − 1 A N q N Aq = b iff A B q B + A N q N = The graph behind A B is a spanning tree T = ( V , E T ) of G , with edge flows q B in E T and edge flows q N in E \ T .

  9. ◮ Since T ⊆ G is a spanning tree, for every edge (chord) e ∈ E \ E T there exists a unique cycle in ( V , E T ∪ { e } ) , called fundamental cycle. → cardinality of | N | = minimum number of edges to be removed from G to obtain a tree.

  10. ◮ Since T ⊆ G is a spanning tree, for every edge (chord) e ∈ E \ E T there exists a unique cycle in ( V , E T ∪ { e } ) , called fundamental cycle. → cardinality of | N | = minimum number of edges to be removed from G to obtain a tree. ◮ Kirchhoff 2: (pressure drops along fundamental cycles sum up to zero) ( A + ) ⊤ ( p + ) 2 = − Φ | q | q with p ∈ R | V | standing for the node pressures; squares as well as + moduli understood component-wise.

  11. ◮ Since T ⊆ G is a spanning tree, for every edge (chord) e ∈ E \ E T there exists a unique cycle in ( V , E T ∪ { e } ) , called fundamental cycle. → cardinality of | N | = minimum number of edges to be removed from G to obtain a tree. ◮ Kirchhoff 2: (pressure drops along fundamental cycles sum up to zero) ( A + ) ⊤ ( p + ) 2 = − Φ | q | q with p ∈ R | V | standing for the node pressures; squares as well as + moduli understood component-wise.

  12. Central Object of Study: Kirchhoff 1 + 2 plus pressure bounds Aq = b ( ω ) (1) ( A + ) ⊤ ( p + ) 2 = − Φ | q | q (2) � p + min , p + max � p + ∈ (3) , Analytical as well as Algebraic Appeal ! Observations: ◮ System of multivariate polynomials of degree two with absolute values.

  13. Central Object of Study: Kirchhoff 1 + 2 plus pressure bounds Aq = b ( ω ) (1) ( A + ) ⊤ ( p + ) 2 = − Φ | q | q (2) � p + min , p + max � p + ∈ (3) , Analytical as well as Algebraic Appeal ! Observations: ◮ System of multivariate polynomials of degree two with absolute values. ◮ Analytical View: monotone, coercive operator,

  14. Central Object of Study: Kirchhoff 1 + 2 plus pressure bounds Aq = b ( ω ) (1) ( A + ) ⊤ ( p + ) 2 = − Φ | q | q (2) � p + min , p + max � p + ∈ (3) , Analytical as well as Algebraic Appeal ! Observations: ◮ System of multivariate polynomials of degree two with absolute values. ◮ Analytical View: monotone, coercive operator, Lipschitzian gradients and Jacobian,

  15. Central Object of Study: Kirchhoff 1 + 2 plus pressure bounds Aq = b ( ω ) (1) ( A + ) ⊤ ( p + ) 2 = − Φ | q | q (2) � p + min , p + max � p + ∈ (3) , Analytical as well as Algebraic Appeal ! Observations: ◮ System of multivariate polynomials of degree two with absolute values. ◮ Analytical View: monotone, coercive operator, Lipschitzian gradients and Jacobian, Brouwer’s Fixed Point Theorem.

  16. Central Object of Study: Kirchhoff 1 + 2 plus pressure bounds Aq = b ( ω ) (1) ( A + ) ⊤ ( p + ) 2 = − Φ | q | q (2) � p + min , p + max � p + ∈ (3) , Analytical as well as Algebraic Appeal ! Observations: ◮ System of multivariate polynomials of degree two with absolute values. ◮ Analytical View: monotone, coercive operator, Lipschitzian gradients and Jacobian, Brouwer’s Fixed Point Theorem. ◮ Algebraic View: affine variety,

  17. Central Object of Study: Kirchhoff 1 + 2 plus pressure bounds Aq = b ( ω ) (1) ( A + ) ⊤ ( p + ) 2 = − Φ | q | q (2) � p + min , p + max � p + ∈ (3) , Analytical as well as Algebraic Appeal ! Observations: ◮ System of multivariate polynomials of degree two with absolute values. ◮ Analytical View: monotone, coercive operator, Lipschitzian gradients and Jacobian, Brouwer’s Fixed Point Theorem. ◮ Algebraic View: affine variety, polynomial ideal,

  18. Central Object of Study: Kirchhoff 1 + 2 plus pressure bounds Aq = b ( ω ) (1) ( A + ) ⊤ ( p + ) 2 = − Φ | q | q (2) � p + min , p + max � p + ∈ (3) , Analytical as well as Algebraic Appeal ! Observations: ◮ System of multivariate polynomials of degree two with absolute values. ◮ Analytical View: monotone, coercive operator, Lipschitzian gradients and Jacobian, Brouwer’s Fixed Point Theorem. ◮ Algebraic View: affine variety, polynomial ideal, (comprehensive) Gr¨ obner bases,

  19. Central Object of Study: Kirchhoff 1 + 2 plus pressure bounds Aq = b ( ω ) (1) ( A + ) ⊤ ( p + ) 2 = − Φ | q | q (2) � p + min , p + max � p + ∈ (3) , Analytical as well as Algebraic Appeal ! Observations: ◮ System of multivariate polynomials of degree two with absolute values. ◮ Analytical View: monotone, coercive operator, Lipschitzian gradients and Jacobian, Brouwer’s Fixed Point Theorem. ◮ Algebraic View: affine variety, polynomial ideal, (comprehensive) Gr¨ obner bases, elimination order,

  20. Central Object of Study: Kirchhoff 1 + 2 plus pressure bounds Aq = b ( ω ) (1) ( A + ) ⊤ ( p + ) 2 = − Φ | q | q (2) � p + min , p + max � p + ∈ (3) , Analytical as well as Algebraic Appeal ! Observations: ◮ System of multivariate polynomials of degree two with absolute values. ◮ Analytical View: monotone, coercive operator, Lipschitzian gradients and Jacobian, Brouwer’s Fixed Point Theorem. ◮ Algebraic View: affine variety, polynomial ideal, (comprehensive) Gr¨ obner bases, elimination order, Shape Lemma.

  21. 0-dimensionality of affine variety

  22. 0-dimensionality of affine variety � � Aq = b and F · Φ · | q | · q = 0 . F circuit matrix , whose rows correspond to the fundamental circuits and whose columns correspond to the edges in E

  23. 0-dimensionality of affine variety � � Aq = b and F · Φ · | q | · q = 0 . F circuit matrix , whose rows correspond to the fundamental circuits and whose columns correspond to the edges in E Φ · q 2 � � Aq = b , F · = 0 , q ≥ 0

  24. 0-dimensionality of affine variety � � Aq = b and F · Φ · | q | · q = 0 . F circuit matrix , whose rows correspond to the fundamental circuits and whose columns correspond to the edges in E Φ · q 2 � � Aq = b , F · = 0 , q ≥ 0 Denote the set of solutions of the above system by G = G b , Φ := { q ∈ C E | A q = b , F Φ q 2 = 0 } and Q = diag ( q ) Instead of checking the mere dimension of G , we will check when the tangent space at points q ∈ G b , Φ will be at least one-dimensional.

  25. 0-dimensionality of affine variety � � Aq = b and F · Φ · | q | · q = 0 . F circuit matrix , whose rows correspond to the fundamental circuits and whose columns correspond to the edges in E Φ · q 2 � � Aq = b , F · = 0 , q ≥ 0 Denote the set of solutions of the above system by G = G b , Φ := { q ∈ C E | A q = b , F Φ q 2 = 0 } and Q = diag ( q ) Instead of checking the mere dimension of G , we will check when the tangent space at points q ∈ G b , Φ will be at least one-dimensional.The tangent space T q ( G b , Φ ) in a point q ∈ G b , Φ is given by the linear equations A dq = 0 and F Φ Q dq = 0 .

  26. 0-dimensionality of affine variety � � Aq = b and F · Φ · | q | · q = 0 . F circuit matrix , whose rows correspond to the fundamental circuits and whose columns correspond to the edges in E Φ · q 2 � � Aq = b , F · = 0 , q ≥ 0 Denote the set of solutions of the above system by G = G b , Φ := { q ∈ C E | A q = b , F Φ q 2 = 0 } and Q = diag ( q ) Instead of checking the mere dimension of G , we will check when the tangent space at points q ∈ G b , Φ will be at least one-dimensional.The tangent space T q ( G b , Φ ) in a point q ∈ G b , Φ is given by the linear equations A dq = 0 and F Φ Q dq = 0 . A � � Thus, dim C T q ( G b , Φ ) ≥ 1 is equivalent to det = 0 . F Φ Q

  27. 0-dimensionality of affine variety � � Aq = b and F · Φ · | q | · q = 0 . F circuit matrix , whose rows correspond to the fundamental circuits and whose columns correspond to the edges in E Φ · q 2 � � Aq = b , F · = 0 , q ≥ 0 Denote the set of solutions of the above system by G = G b , Φ := { q ∈ C E | A q = b , F Φ q 2 = 0 } and Q = diag ( q ) Instead of checking the mere dimension of G , we will check when the tangent space at points q ∈ G b , Φ will be at least one-dimensional.The tangent space T q ( G b , Φ ) in a point q ∈ G b , Φ is given by the linear equations A dq = 0 and F Φ Q dq = 0 . A � � Thus, dim C T q ( G b , Φ ) ≥ 1 is equivalent to det = 0 . F Φ Q � ⊤ � ( A B ) − 1 A N Φ B q 2 B = Φ N q 2 and N �� � � ⊤ ( A B ) − 1 A N � ( A B ) − 1 A N � det Φ B Q B + Φ N Q N ) = 0 .

  28. �� � � − 1 ⊤ b , b : ∃ ( q , p + ) fulfilling ( ?? ), ( ?? ), ( ?? ) M = .

  29. �� � � − 1 ⊤ b , b : ∃ ( q , p + ) fulfilling ( ?? ), ( ?? ), ( ?? ) M = . Proposition: Let A = ( A B , A N ) be a partition into basis and nonbasis matrices. Let Φ B , Φ N and q B , q N be corresponding partitions of Φ and q . Denote g : R | V | × R | N | → R | V | – a multivariate, piece-wise quadratic mapping – such that � − 1 Φ B A ⊤ � A − 1 A − 1 � � � �� � g ( u , v ) := B ( u − A N v ) B ( u − A N v ) (4) . B

  30. �� � � − 1 ⊤ b , b : ∃ ( q , p + ) fulfilling ( ?? ), ( ?? ), ( ?? ) M = . Proposition: Let A = ( A B , A N ) be a partition into basis and nonbasis matrices. Let Φ B , Φ N and q B , q N be corresponding partitions of Φ and q . Denote g : R | V | × R | N | → R | V | – a multivariate, piece-wise quadratic mapping – such that � − 1 Φ B A ⊤ � A − 1 A − 1 � � � �� � g ( u , v ) := B ( u − A N v ) B ( u − A N v ) (4) . B Then nomination b + is valid iff ( − 1 ⊤ b , b ) ∈ M

  31. �� � � − 1 ⊤ b , b : ∃ ( q , p + ) fulfilling ( ?? ), ( ?? ), ( ?? ) M = . Proposition: Let A = ( A B , A N ) be a partition into basis and nonbasis matrices. Let Φ B , Φ N and q B , q N be corresponding partitions of Φ and q . Denote g : R | V | × R | N | → R | V | – a multivariate, piece-wise quadratic mapping – such that � − 1 Φ B A ⊤ � A − 1 A − 1 � � � �� � g ( u , v ) := B ( u − A N v ) B ( u − A N v ) (4) . B Then nomination b + is valid iff ( − 1 ⊤ b , b ) ∈ M IFF ∃ z such that ( b , z ) fulfils A ⊤ N g ( b , z ) = Φ N | z | z (5) and ) 2 + g i ( b , z ) � ) 2 + g i ( b , z ) � ( p max ( p min � � ≥ min max (6) i i i =1 ,..., n i =1 ,..., n ) 2 + g i ( b , z ) ( p min ) 2 ( p max ≤ � � min (7) 0 i i =1 ,..., n � ) 2 + g i ( b , z ) � ( p max ) 2 ( p min ≥ max (8) 0 i i =1 ,..., n

  32. After some formula manipulation, one arrives at the equivalent polynomial system with degree 2, | N | equations, and | N | variables.

  33. After some formula manipulation, one arrives at the equivalent polynomial system with degree 2, | N | equations, and | N | variables. � � ( A B ) − 1 b − ( A B ) − 1 A N q N � � ( A B ) − 1 b − ( A B ) − 1 A N q N � A ⊤ N ( A ⊤ B ) − 1 Φ B � � � − Φ N | q N | q N = 0 Solve this system in q N , and insert solution(s) below:

  34. After some formula manipulation, one arrives at the equivalent polynomial system with degree 2, | N | equations, and | N | variables. � ( A B ) − 1 b − ( A B ) − 1 A N q N � � � ( A B ) − 1 b − ( A B ) − 1 A N q N � A ⊤ N ( A ⊤ B ) − 1 Φ B � � � − Φ N | q N | q N = 0 Solve this system in q N , and insert solution(s) below: p 2 = 1 | V |− 1 p 2 � � ( A B ) − 1 b − ( A B ) − 1 A N q N � � ( A B ) − 1 b − ( A B ) − 1 A N q N � o − ( A ⊤ B ) − 1 Φ B � � �

  35. After some formula manipulation, one arrives at the equivalent polynomial system with degree 2, | N | equations, and | N | variables. � � ( A B ) − 1 b − ( A B ) − 1 A N q N � � ( A B ) − 1 b − ( A B ) − 1 A N q N � A ⊤ N ( A ⊤ B ) − 1 Φ B � � � − Φ N | q N | q N = 0 Solve this system in q N , and insert solution(s) below: p 2 = 1 | V |− 1 p 2 � � ( A B ) − 1 b − ( A B ) − 1 A N q N � � ( A B ) − 1 b − ( A B ) − 1 A N q N � o − ( A ⊤ B ) − 1 Φ B � � � Check p + ∈ � p + min , p + max �

  36. After some formula manipulation, one arrives at the equivalent polynomial system with degree 2, | N | equations, and | N | variables. � ( A B ) − 1 b − ( A B ) − 1 A N q N � � � ( A B ) − 1 b − ( A B ) − 1 A N q N � A ⊤ N ( A ⊤ B ) − 1 Φ B � � � − Φ N | q N | q N = 0 Solve this system in q N , and insert solution(s) below: p 2 = 1 | V |− 1 p 2 � � ( A B ) − 1 b − ( A B ) − 1 A N q N � � ( A B ) − 1 b − ( A B ) − 1 A N q N � o − ( A ⊤ B ) − 1 Φ B � � � Check p + ∈ � p + min , p + max � meaning � �� � ) 2 + g i ( b , z ) � ) 2 + g i ( b , z ) � ) 2 � ( p min ( p max ( p min ) 2 , ( p max � ∩ � = ∅ max , min 0 0 i i i =1 ,..., n i =1 ,..., n

  37. � b + : 1 ⊤ b + = 0 and ∃ ( q , p + ) : p + ∈ � p + min , p + max � � M = , Kirchhoff 1 and 2 .

  38. � b + : 1 ⊤ b + = 0 and ∃ ( q , p + ) : p + ∈ � p + min , p + max � � M = , Kirchhoff 1 and 2 . Nomination Validation (passive network) – Decide b + ∈ M Given a balanced load vector b + . Do there exist arc flows q and node pressures p + within bounds p + min , p + max fulfilling the Kirchhoff Laws ??

  39. “Regularity of Coefficients no Surprise” – Tailor F ( b , q N ) = 0 by properly directing G ∗ � � Φ Nl · | q Nl | ∗ = � � � � � Φ j b i − q Nh � � , � � � � j : e j ∈ E ( C l ) i ∈ I j h : C h ∈ H j or l = 1 , . . . , L , � � � � � � � � � Φ Nl ·| q Nl | q Nl = Φ j b i − q Nh b i − q Nh � � � � i ∈ I j h : C h ∈ H j i ∈ I j h : C h ∈ H j j : e j ∈ E ( C l ) with ◮ variables q N 1 , . . . , q NL , L = number of fundamental cycles. ◮ C l denotes the cycle containing q l , ◮ E ( C l ) the set of all edges, except for q Nl , with both ends in C l , ◮ I j = V ( T ( e he j )) the node set of the tree T which is rooted in the head e he of e j . j ◮ H j the set of all cycles C h , h ∈ { 1 , . . . , L } , the edge e j belongs to.

  40. Φ 1 | β 1 − q N 1 | ∗ + Φ 2 | β 2 − q N 1 | ∗ + Φ 3 | β 3 − q N 1 − q N 4 − q N 5 | ∗ Φ N 1 | q N 1 | ∗ = Φ 4 | β 4 − q N 2 − q N 4 − q N 5 | ∗ + Φ 5 | β 5 − q N 2 | ∗ + Φ 6 | β 6 − q N 2 | ∗ Φ N 2 | q N 2 | ∗ = Φ 7 | β 7 − q N 3 − q N 4 − q N 5 | ∗ + Φ 8 | β 8 − q N 3 | ∗ + Φ 9 | β 9 − q N 3 | ∗ Φ N 3 | q N 3 | ∗ = Φ 3 | β 3 − q N 1 − q N 4 − q N 5 | ∗ + Φ 4 | β 4 − q N 2 − q N 4 − q N 5 | ∗ + Φ N 4 | q N 4 | ∗ = Φ 7 | β 7 − q N 3 − q N 4 − q N 5 | ∗ + Φ 10 | β 10 − q N 4 | ∗ + Φ 11 | β 11 − q N 4 | ∗ + Φ 3 | β 3 − q N 1 − q N 4 − q N 5 | ∗ + Φ 4 | β 4 − q N 2 − q N 4 − q N 5 | ∗ + Φ N 5 | q N 5 | ∗ = Φ 7 | β 7 − q N 3 − q N 4 − q N 5 | ∗ +

  41. Two Cycles Sufficient ?? – Gallery of Real Gas Networks (I) Groningen voedingsstation(s) [entry-punten] compressor- en mengstation compressorstation N mengstation BBL exportstation installatie ondergrondse opslag L installatie voor vloeibaar aardgas N stikstofinjectie leiding – Groningen-gas N leiding – hoogcalorisch gas N leiding – laagcalorisch gas leiding – ontzwaveld gas leiding – stikstof L N

  42. Two Cycles Sufficient ?? – Gallery of Real Gas Networks (II)

  43. Two Cycles Sufficient ?? – Gallery of Real Gas Networks (III)

  44. Two Cycles Sufficient ?? – Gallery of Real Gas Networks (III)

  45. Two Cycles Sufficient ?? – Gallery of Real Gas Networks (IV)

  46. Two Cycles Sufficient ?? – Gallery of Real Gas Networks (V)

  47. OGE – High Caloric Grid Northern Germany Essentially 2 Circles !!

  48. OGE - Low Caloric Grid: Always a Matter of Detail

  49. Motivation: Probabilistic Setting Spheric-Radial Decomposition - Procedure for Approximating Gaussian Probabilities

  50. Underlying Probability Distributions and their Decomposition Assume that ξ ∼ N ( µ, Σ) , i.e., the random vector ξ follows a multivariate Gaussian distribution with mean vector µ and positive definite covariance matrix Σ . Theorem (spheric-radial decomposition) Let ξ ∼ N (0 , R ) be some n -dimensional standard Gaussian distribution with zero mean and positive definite correlation matrix R .

  51. Underlying Probability Distributions and their Decomposition Assume that ξ ∼ N ( µ, Σ) , i.e., the random vector ξ follows a multivariate Gaussian distribution with mean vector µ and positive definite covariance matrix Σ . Theorem (spheric-radial decomposition) Let ξ ∼ N (0 , R ) be some n -dimensional standard Gaussian distribution with zero mean and positive definite correlation matrix R . Then, for any Borel measurable subset M ⊆ R n it holds that � P ( ξ ∈ M ) = S n − 1 µ χ { r ≥ 0 | rLv ∈ M } d µ η ( v ) , where S n − 1 is the ( n − 1) -dimensional sphere in R n , µ η is the uniform distribution on S n − 1 , µ χ denotes the χ -distribution with n degrees of freedom and L is such that R = LL T (e.g., Cholesky decomposition).

  52. Algorithm:

  53. Algorithm: Let ξ ∼ N ( µ, Σ) and L such that LL T = Σ (e.g., Cholesky factorization).

  54. Algorithm: Let ξ ∼ N ( µ, Σ) and L such that LL T = Σ (e.g., Cholesky factorization). 1. Sample N points { v 1 , . . . , v N } uniformly distributed on the sphere S n − 1 .

  55. Algorithm: Let ξ ∼ N ( µ, Σ) and L such that LL T = Σ (e.g., Cholesky factorization). 1. Sample N points { v 1 , . . . , v N } uniformly distributed on the sphere S n − 1 . 2. Compute the one-dimensional sets M i := { r ≥ 0 | rLv i + µ ∈ M } for i = 1 , . . . , N .

  56. Algorithm: Let ξ ∼ N ( µ, Σ) and L such that LL T = Σ (e.g., Cholesky factorization). 1. Sample N points { v 1 , . . . , v N } uniformly distributed on the sphere S n − 1 . 2. Compute the one-dimensional sets M i := { r ≥ 0 | rLv i + µ ∈ M } for i = 1 , . . . , N . 3. Set P ( ξ ∈ M ) ≈ N − 1 N � µ χ ( M i ) . i =1 Then nomination b + is valid iff ( − 1 ⊤ b , b ) ∈ M

  57. Algorithm: Let ξ ∼ N ( µ, Σ) and L such that LL T = Σ (e.g., Cholesky factorization). 1. Sample N points { v 1 , . . . , v N } uniformly distributed on the sphere S n − 1 . 2. Compute the one-dimensional sets M i := { r ≥ 0 | rLv i + µ ∈ M } for i = 1 , . . . , N . 3. Set P ( ξ ∈ M ) ≈ N − 1 N � µ χ ( M i ) . i =1 Then nomination b + is valid iff ( − 1 ⊤ b , b ) ∈ M IFF ∃ z such that ( b , z ) fulfils A ⊤ N g ( b , z ) = Φ N | z | z (9) and ) 2 + g i ( b , z ) � ) 2 + g i ( b , z ) � ( p max ( p min � � ≥ min max (10) i i i =1 ,..., n i =1 ,..., n ) 2 + g i ( b , z ) ( p min ) 2 ( p max ≤ min � � (11) 0 i i =1 ,..., n � ) 2 + g i ( b , z ) � ) 2 ( p max ( p min ≥ max (12) 0 i i =1 ,..., n

  58. 1 1 Spheric-Radial Spheric-Radial Generic Sampling Generic Sampling 0.995 0.995 0.99 0.99 0.985 0.985 0.98 0.98 0.975 0.975 0.97 0.97 0.965 0.965 0.96 0.96 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 Figure : Moving average of computed probability with respect to number of iterations for Mersenne Twister (left) and QMC sampling (right)

  59. Further Considerations:

  60. Further Considerations: ◮ Networks with at most one fundamental cycle can be handled with the solution formula from highschool maths.

  61. Further Considerations: ◮ Networks with at most one fundamental cycle can be handled with the solution formula from highschool maths. ◮ For mdels with two or more cycles computational algebra has something to offer, Gr¨ obner Bases .

  62. With polynomials f 1 , . . . , f s in C [ x 1 , . . . , x n ] , the set � s � � � f 1 , . . . , f s � := h i f i : h 1 , . . . , h s ∈ C [ x 1 , . . . , x n ] i =1 (of “polynomial linear combinations”) is called the ideal generated by f 1 , . . . , f s . The polynomials f 1 , . . . , f s then are said to form a basis of I .

  63. With polynomials f 1 , . . . , f s in C [ x 1 , . . . , x n ] , the set � s � � � f 1 , . . . , f s � := h i f i : h 1 , . . . , h s ∈ C [ x 1 , . . . , x n ] i =1 (of “polynomial linear combinations”) is called the ideal generated by f 1 , . . . , f s . The polynomials f 1 , . . . , f s then are said to form a basis of I . With polynomials f 1 , . . . , f s in C [ x 1 , . . . , x n ] , the set V ( f 1 , . . . , f s ) := { ( a 1 , . . . , a n ) ∈ C n : f i ( a 1 , . . . , a n ) = 0 , for all 1 ≤ i ≤ s } of common zeros in C n is called the affine variety defined by f 1 , . . . , f s .

  64. With polynomials f 1 , . . . , f s in C [ x 1 , . . . , x n ] , the set � s � � � f 1 , . . . , f s � := h i f i : h 1 , . . . , h s ∈ C [ x 1 , . . . , x n ] i =1 (of “polynomial linear combinations”) is called the ideal generated by f 1 , . . . , f s . The polynomials f 1 , . . . , f s then are said to form a basis of I . With polynomials f 1 , . . . , f s in C [ x 1 , . . . , x n ] , the set V ( f 1 , . . . , f s ) := { ( a 1 , . . . , a n ) ∈ C n : f i ( a 1 , . . . , a n ) = 0 , for all 1 ≤ i ≤ s } of common zeros in C n is called the affine variety defined by f 1 , . . . , f s . Fact: If f 1 , . . . , f s and g 1 , . . . , g t are bases of the same ideal in C [ x 1 , . . . , x n ] , i.e., � f 1 , . . . , f s � = � g 1 , . . . , g t � , then their affine varieties coincide V ( f 1 , . . . , f s ) = V ( g 1 , . . . , g t ) . That means, the systems f 1 = 0 , . . . , f s = 0 and g 1 = 0 , . . . , g t = 0 have the same solution sets (in C n ).

  65. Triangular Form of Polynomial Systems – Variables’ Elimination Fact: Given I = � f 1 , . . . , f s � ⊂ C [ x 1 , . . . , x n ] , under suitable assumptions, there exists a triangular basis G = { g 1 , . . . , g n } for I (Reduced Gr¨ obner Basis) , i.e., g 1 = g 1 ( x 1 , . . . , x n ) , g 2 = g 2 ( x 2 , . . . , x n ) . . . g n − 1 = g n − 1 ( x n − 1 , x n ) , g n = g n ( x n ) G can be computed by a finite algorithm (Buchberger’s Algorithm).

  66. Shape Lemma Let I be a zero-dimensional radical ideal in C [ x 1 , . . . , x n ] such that all d complex roots of I have distinct x n coordinates. Then the reduced Gr¨ obner basis G of I in lexicographic monomial order has the shape − ϕ 1 ( x n ) x 1 − ϕ 2 ( x n ) x 2 . . . − ϕ n − 1 ( x n ) x n − 1 ϕ n ( x n ) where ϕ n is a univariate polynomial of degree d and the remaining ϕ i are polynomials of degree ≤ d − 1 .

  67. b 1 1 q 01 q 13 0 3 q 12 b 0 b 3 q 02 q 23 2 b 2

  68. Now the “red” system ( ?? ) of polynomial equations reads φ 02 | z 1 | z 1 = φ 01 | b 1 + b 2 + b 3 − z 1 | ( b 1 + b 2 + b 3 − z 1 ) + φ 12 | b 2 + b 3 − z 1 − z 2 | ( b 2 + b 3 − z 1 − z 2 ) φ 13 | z 2 | z 2 = φ 12 | b 2 + b 3 − z 1 − z 2 | ( b 2 + b 3 − z 1 − z 2 ) + φ 23 | b 3 − z 2 | ( b 3 − z 2 ) 0-dimensionality of variety: We obtain the equations q 2 1 + q 2 2 = q 2 q 2 2 + q 2 3 = q 2 and 4 5 (implying ( q 1 + q 3 )( q 1 − q 3 ) = ( q 4 + q 5 )( q 4 − q 5 ) ) and ( q 1 + q 2 + q 4 )( q 2 + q 3 + q 5 ) = q 2 2 . Elimination yields a single equation within the variables ( b 1 , b 2 , b 3 ) which decomposes into a product of three factors: b 3 · ( b 1 + b 2 + b 3 ) · ( b 2 1 + b 2 2 + b 2 3 − b 1 b 3 + 3 b 2 b 3 ) = 0 .

  69. φ 02 | z 1 | z 1 = φ 01 | b 1 + b 2 + b 3 − z 1 | ( b 1 + b 2 + b 3 − z 1 )  �  �    �   + φ 12 | b 2 + b 3 − z 1 − z 2 | ( b 2 + b 3 − z 1 − z 2 )   �     �     � φ 13 | z 2 | z 2 = φ 12 | b 2 + b 3 − z 1 − z 2 | ( b 2 + b 3 − z 1 − z 2 )     �     �    + φ 23 | b 3 − z 2 | ( b 3 − z 2 )  �     �     �  y 1 ≥ y 2 + φ 12 | b 2 + b 3 − z 1 − z 2 | ( b 2 + b 3 − z 1 − z 2 )    �     �     �   y 1 ≥ y 3 + φ 12 | b 2 + b 3 − z 1 − z 2 | ( b 2 + b 3 − z 1 − z 2 )   �     �     �     � + φ 23 | b 3 − z 2 | ( b 3 − z 2 )     �     �   y 2 ≥ y 1 − φ 12 | b 2 + b 3 − z 1 − z 2 | ( b 2 + b 3 − z 1 − z 2 )   �     �     �   y 2 ≥ y 3 + φ 23 | b 3 − z 2 | ( b 3 − z 2 )   �     �     �   y 3 ≥ y 1 − φ 12 | b 2 + b 3 − z 1 − z 2 | ( b 2 + b 3 − z 1 − z 2 )   �     �     �    − φ 23 | b 3 − z 2 | ( b 3 − z 2 )  �     �     �    y 3 ≥ y 2 − φ 23 | b 3 − z 2 | ( b 3 − z 2 )  �     �     �    b ∈ R 3 y 0 ≤ y 1 + φ 01 | b 1 + b 2 + b 3 − z 1 | ( b 1 + b 2 + b 3 − z 1 ) � M = ∃ z : . (13) + � �   y 0 ≤ y 2 + φ 01 | b 1 + b 2 + b 3 − z 1 | ( b 1 + b 2 + b 3 − z 1 )  �     �     �     � + φ 12 | b 2 + b 3 − z 1 − z 2 | ( b 2 + b 3 − z 1 − z 2 )     �     �   y 0 ≤ y 3 + φ 01 | b 1 + b 2 + b 3 − z 1 | ( b 1 + b 2 + b 3 − z 1 )   �     �     �     � + φ 12 | b 2 + b 3 − z 1 − z 2 | ( b 2 + b 3 − z 1 − z 2 )     �     �    + φ 23 | b 3 − z 2 | ( b 3 − z 2 )  �     �     �  y 0 ≥ y 1 + φ 01 | b 1 + b 2 + b 3 − z 1 | ( b 1 + b 2 + b 3 − z 1 )    �     �     � y 0 ≥ y 2 + φ 01 | b 1 + b 2 + b 3 − z 1 | ( b 1 + b 2 + b 3 − z 1 )     �     �     �   + φ 12 | b 2 + b 3 − z 1 − z 2 | ( b 2 + b 3 − z 1 − z 2 )   �     �  y 0 ≥ y 2 + φ 01 | b 1 + b 2 + b 3 − z 1 | ( b 1 + b 2 + b 3 − z 1 )    �     �     �    + φ 12 | b 2 + b 3 − z 1 − z 2 | ( b 2 + b 3 − z 1 − z 2 )  �     �    y 0 ≥ y 2 + φ 01 | b 1 + b 2 + b 3 − z 1 | ( b 1 + b 2 + b 3 − z 1 )  �     �     �     � + φ 12 | b 2 + b 3 − z 1 − z 2 | ( b 2 + b 3 − z 1 − z 2 )     �    � + φ 23 | b 3 − z 2 | ( b 3 − z 2 )

  70. M i for a Single Sample Point | z 1 | z 1 = | r + 3 . 5 − z 1 | ( r + 3 . 5 − z 1 )  �  �    �   + | 2 . 5 − z 1 − z 2 | (2 . 5 − z 1 − z 2 )   �     �     �  | z 2 | z 2 = | 2 . 5 − z 1 − z 2 | (2 . 5 − z 1 − z 2 ) + | 0 . 5 − z 2 | (0 . 5 − z 2 )    �     �     � y 1 ≥ y 2 + | 2 . 5 − z 1 − z 2 | (2 . 5 − z 1 − z 2 )     �     �     �  y 1 ≥ y 3 + | 2 . 5 − z 1 − z 2 | (2 . 5 − z 1 − z 2 )    �     �     �   + | 0 . 5 − z 2 | (0 . 5 − z 2 )   �     �     �   y 2 ≥ y 1 − | 2 . 5 − z 1 − z 2 | (2 . 5 − z 1 − z 2 )   �     �     �    y 2 ≥ y 3 + | 0 . 5 − z 2 | (0 . 5 − z 2 )  �     �     �     � y 3 ≥ y 1 − | 2 . 5 − z 1 − z 2 | (2 . 5 − z 1 − z 2 )     �     �     �   − | 0 . 5 − z 2 | (0 . 5 − z 2 )   �     �     �  y 3 ≥ y 2 − | 0 . 5 − z 2 | (0 . 5 − z 2 ) M 1 = r ≥ 0 ∃ z : . (14) � �  �   y 0 ≤ y 1 + | r + 3 . 5 − z 1 | ( r + 3 . 5 − z 1 )   �     �     �     � y 0 ≤ y 2 + | r + 3 . 5 − z 1 | ( r + 3 . 5 − z 1 )     �     �     �  + | 2 . 5 − z 1 − z 2 | (2 . 5 − z 1 − z 2 )    �     �     � y 0 ≤ y 3 + | r + 3 . 5 − z 1 | ( r + 3 . 5 − z 1 )     �     �     �   + | 2 . 5 − z 1 − z 2 | (2 . 5 − z 1 − z 2 ) + | 0 . 5 − z 2 | (0 . 5 − z 2 )   �     �     �  y 0 ≥ y 1 + | r + 3 . 5 − z 1 | ( r + 3 . 5 − z 1 )    �     �     �  y 0 ≥ y 2 + | r + 3 . 5 − z 1 | ( r + 3 . 5 − z 1 )    �     �     �   + | 2 . 5 − z 1 − z 2 | (2 . 5 − z 1 − z 2 )   �     �     �   y 0 ≥ y 2 + | r + 3 . 5 − z 1 | ( r + 3 . 5 − z 1 )   �     �     �    + | 2 . 5 − z 1 − z 2 | (2 . 5 − z 1 − z 2 ) + | 0 . 5 − z 2 | (0 . 5 − z 2 ) �

  71. Parametric Solution of F ( b , q N ) = 0 � � � � � � � � � Φ Nl · | q Nl | q Nl = Φ j b i − b i − q Nh q Nh � � � � j : e j ∈ E ( C l ) i ∈ I j h : C h ∈ H j i ∈ I j h : C h ∈ H j l = 1 , . . . , L , ◮ Case distinction of absolute values identifies validity regions for quadratic multivariate polynomials. ◮ In every region, reduced Gr¨ obner basis with lexicographic order yields triangular representation, at best, Shape Lemma applies. ◮ There is an extension of Buchberger’s Algorithm addressing parametric polynomial equations and computing a Comprehensive Gr¨ obner Basis . ◮ The idea is to handle parameters as additional variables and accompany the Buchberger iterations by a case distinction to separate parameter settings “leading to unwanted eliminations”. ◮ Successful experiments with package SINGULAR for instances with four pairwise interwoven cycles.

  72. Three Cycles Let us now consider a network with three interconnected cycles given by the following node-arc incidence matrix:  − 1 0 0 − 1 0 − 1    1 0 0 − 1 0 − 1 1 − 1 0 0 − 1 0 A + =    =   − 1   0 1 1 0 0  A B A N 0 0 1 0 1 1 b 1 1 q 01 q 13 q 12 0 3 q 02 q 23 b 0 2 b 3 b 2 q 03

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend