op amps introduction
play

Op-amps: introduction * The Operational Amplifier (Op-Amp) is a - PowerPoint PPT Presentation

Op-amps: introduction * The Operational Amplifier (Op-Amp) is a versatile building block that can be used for realizing several electronic circuits. M. B. Patil, IIT Bombay Op-amps: introduction * The Operational Amplifier (Op-Amp) is a versatile


  1. Op-amp circuits (linear region) R 2 i 1 V i R 1 i i V o R L Since V + ≈ V − , V − ≈ 0 V → i 1 = ( V i − 0) / R 1 = V i / R 1 . (The non-inverting input is at real ground here, and the inverting input is at virtual ground.) Since i i (current entering the op-amp) is zero, i 1 goes through R 2 .

  2. Op-amp circuits (linear region) R 2 i 1 V i R 1 i i V o R L Since V + ≈ V − , V − ≈ 0 V → i 1 = ( V i − 0) / R 1 = V i / R 1 . (The non-inverting input is at real ground here, and the inverting input is at virtual ground.) Since i i (current entering the op-amp) is zero, i 1 goes through R 2 .

  3. Op-amp circuits (linear region) R 2 i 1 V i R 1 i i V o R L Since V + ≈ V − , V − ≈ 0 V → i 1 = ( V i − 0) / R 1 = V i / R 1 . (The non-inverting input is at real ground here, and the inverting input is at virtual ground.) Since i i (current entering the op-amp) is zero, i 1 goes through R 2 . � V i � R 2 � � → V o = V − − i 1 R 2 = 0 − R 2 = − V i . R 1 R 1

  4. Op-amp circuits (linear region) R 2 i 1 V i R 1 i i V o R L Since V + ≈ V − , V − ≈ 0 V → i 1 = ( V i − 0) / R 1 = V i / R 1 . (The non-inverting input is at real ground here, and the inverting input is at virtual ground.) Since i i (current entering the op-amp) is zero, i 1 goes through R 2 . � V i � R 2 � � → V o = V − − i 1 R 2 = 0 − R 2 = − V i . R 1 R 1 The circuit is called an “inverting amplifier.”

  5. Op-amp circuits (linear region) R 2 i 1 V i R 1 i i V o R L Since V + ≈ V − , V − ≈ 0 V → i 1 = ( V i − 0) / R 1 = V i / R 1 . (The non-inverting input is at real ground here, and the inverting input is at virtual ground.) Since i i (current entering the op-amp) is zero, i 1 goes through R 2 . � V i � R 2 � � → V o = V − − i 1 R 2 = 0 − R 2 = − V i . R 1 R 1 The circuit is called an “inverting amplifier.” Where does the current go?

  6. Op-amp circuits (linear region) R 2 R 2 i 1 i 1 V i V i − 1 V R 1 i i R 1 V o 0.1 V V o R L R L Since V + ≈ V − , V − ≈ 0 V → i 1 = ( V i − 0) / R 1 = V i / R 1 . (The non-inverting input is at real ground here, and the inverting input is at virtual ground.) Since i i (current entering the op-amp) is zero, i 1 goes through R 2 . � V i � R 2 � � → V o = V − − i 1 R 2 = 0 − R 2 = − V i . R 1 R 1 The circuit is called an “inverting amplifier.” Where does the current go?

  7. Op-amp circuits (linear region) R 2 R 2 i 1 i 1 V i V i − 1 V R 1 i i R 1 V o 0.1 V V o R L R L Since V + ≈ V − , V − ≈ 0 V → i 1 = ( V i − 0) / R 1 = V i / R 1 . (The non-inverting input is at real ground here, and the inverting input is at virtual ground.) Since i i (current entering the op-amp) is zero, i 1 goes through R 2 . � V i � R 2 � � → V o = V − − i 1 R 2 = 0 − R 2 = − V i . R 1 R 1 The circuit is called an “inverting amplifier.” Where does the current go? (Op-amp 741 can source or sink about 25 mA.) M. B. Patil, IIT Bombay

  8. Op-amp circuits: inverting amplifier 5 V m = 0.5 V 10 k f = 1 kHz V o V i , V o (Volts) R 2 1 k V i 0 R 1 V o V i R L −5 0 0.5 1 1.5 2 t (msec) M. B. Patil, IIT Bombay

  9. Op-amp circuits: inverting amplifier 5 V m = 0.5 V 10 k f = 1 kHz V o V i , V o (Volts) R 2 1 k V i 0 R 1 V o V i R L −5 0 0.5 1 1.5 2 t (msec) * The gain of the inverting amplifier is − R 2 / R 1 . It is called the “closed-loop gain” (to distinguish it from the “open-loop gain” of the op-amp which is ∼ 10 5 ). M. B. Patil, IIT Bombay

  10. Op-amp circuits: inverting amplifier 5 V m = 0.5 V 10 k f = 1 kHz V o V i , V o (Volts) R 2 1 k V i 0 R 1 V o V i R L −5 0 0.5 1 1.5 2 t (msec) * The gain of the inverting amplifier is − R 2 / R 1 . It is called the “closed-loop gain” (to distinguish it from the “open-loop gain” of the op-amp which is ∼ 10 5 ). * The gain can be adjusted simply by changing R 1 or R 2 ! M. B. Patil, IIT Bombay

  11. Op-amp circuits: inverting amplifier 5 V m = 0.5 V 10 k f = 1 kHz V o V i , V o (Volts) R 2 1 k V i 0 R 1 V o V i R L −5 0 0.5 1 1.5 2 t (msec) * The gain of the inverting amplifier is − R 2 / R 1 . It is called the “closed-loop gain” (to distinguish it from the “open-loop gain” of the op-amp which is ∼ 10 5 ). * The gain can be adjusted simply by changing R 1 or R 2 ! * For the common-emitter amplifier, on the other hand, the gain − g m ( R C � R L ) depends on how the BJT is biased (since g m depends on I C ). M. B. Patil, IIT Bombay

  12. Op-amp circuits: inverting amplifier 5 V m = 0.5 V 10 k f = 1 kHz V o V i , V o (Volts) R 2 1 k V i 0 R 1 V o V i R L −5 0 0.5 1 1.5 2 t (msec) * The gain of the inverting amplifier is − R 2 / R 1 . It is called the “closed-loop gain” (to distinguish it from the “open-loop gain” of the op-amp which is ∼ 10 5 ). * The gain can be adjusted simply by changing R 1 or R 2 ! * For the common-emitter amplifier, on the other hand, the gain − g m ( R C � R L ) depends on how the BJT is biased (since g m depends on I C ). (SEQUEL file: ee101 inv amp 1.sqproj ) M. B. Patil, IIT Bombay

  13. Op-amp circuits: inverting amplifier 15 V m = 2 V 10 k f = 1 kHz V o V i , V o (Volts) R 2 1 k V i R 1 0 V o V i R L −15 0 0.5 1 1.5 2 t (msec) M. B. Patil, IIT Bombay

  14. Op-amp circuits: inverting amplifier 15 V m = 2 V 10 k f = 1 kHz V o V i , V o (Volts) R 2 1 k V i R 1 0 V o V i R L −15 0 0.5 1 1.5 2 t (msec) * The output voltage is limited to ± V sat . M. B. Patil, IIT Bombay

  15. Op-amp circuits: inverting amplifier 15 V m = 2 V 10 k f = 1 kHz V o V i , V o (Volts) R 2 1 k V i R 1 0 V o V i R L −15 0 0.5 1 1.5 2 t (msec) * The output voltage is limited to ± V sat . * V sat is ∼ 1 . 5 V less than the supply voltage V CC . M. B. Patil, IIT Bombay

  16. Op-amp circuits: inverting amplifier 10 V m = 1 V V o (expected) 10 k f = 25 kHz R 2 V o V i , V o (Volts) 1 k V i 0 R 1 V o V i R L −10 0 20 40 60 80 t ( µ sec) M. B. Patil, IIT Bombay

  17. Op-amp circuits: inverting amplifier 10 V m = 1 V V o (expected) 10 k f = 25 kHz R 2 V o V i , V o (Volts) 1 k V i 0 R 1 V o V i R L −10 0 20 40 60 80 t ( µ sec) * If the signal frequency is too high, a practical op-amp cannot keep up with the input due to its “slew rate” limitation. M. B. Patil, IIT Bombay

  18. Op-amp circuits: inverting amplifier 10 V m = 1 V V o (expected) 10 k f = 25 kHz R 2 V o V i , V o (Volts) 1 k V i 0 R 1 V o V i R L −10 0 20 40 60 80 t ( µ sec) * If the signal frequency is too high, a practical op-amp cannot keep up with the input due to its “slew rate” limitation. * The slew rate of an op-amp is the maximum rate at which the op-amp output can rise (or fall). M. B. Patil, IIT Bombay

  19. Op-amp circuits: inverting amplifier 10 V m = 1 V V o (expected) 10 k f = 25 kHz R 2 V o V i , V o (Volts) 1 k V i 0 R 1 V o V i R L −10 0 20 40 60 80 t ( µ sec) * If the signal frequency is too high, a practical op-amp cannot keep up with the input due to its “slew rate” limitation. * The slew rate of an op-amp is the maximum rate at which the op-amp output can rise (or fall). * For the 741, the slew rate is 0 . 5 V /µ sec. M. B. Patil, IIT Bombay

  20. Op-amp circuits: inverting amplifier 10 V m = 1 V V o (expected) 10 k f = 25 kHz R 2 V o V i , V o (Volts) 1 k V i 0 R 1 V o V i R L −10 0 20 40 60 80 t ( µ sec) * If the signal frequency is too high, a practical op-amp cannot keep up with the input due to its “slew rate” limitation. * The slew rate of an op-amp is the maximum rate at which the op-amp output can rise (or fall). * For the 741, the slew rate is 0 . 5 V /µ sec. (SEQUEL file: ee101 inv amp 2.sqproj ) M. B. Patil, IIT Bombay

  21. Op-amp circuits: inverting amplifier R 2 R 2 V i V i R 1 R 1 V o V o R L R L Circuit 1 Circuit 2 What if the + (non-inverting) and − (inverting) inputs of the op-amp are interchanged? M. B. Patil, IIT Bombay

  22. Op-amp circuits: inverting amplifier R 2 R 2 V i V i R 1 R 1 V o V o R L R L Circuit 1 Circuit 2 What if the + (non-inverting) and − (inverting) inputs of the op-amp are interchanged? Our previous analysis would once again give us V o = − R 2 V i . R 1 M. B. Patil, IIT Bombay

  23. Op-amp circuits: inverting amplifier R 2 R 2 V i V i R 1 R 1 V o V o R L R L Circuit 1 Circuit 2 What if the + (non-inverting) and − (inverting) inputs of the op-amp are interchanged? Our previous analysis would once again give us V o = − R 2 V i . R 1 However, from Circuit 1 to Circuit 2, the nature of the feedback changes from negative to positive. → Our assumption that the op-amp is working in the linear region does not hold for Circuit 2, and V o = − R 2 V i does not apply any more. R 1 M. B. Patil, IIT Bombay

  24. Op-amp circuits: inverting amplifier R 2 R 2 V i V i R 1 R 1 V o V o R L R L Circuit 1 Circuit 2 What if the + (non-inverting) and − (inverting) inputs of the op-amp are interchanged? Our previous analysis would once again give us V o = − R 2 V i . R 1 However, from Circuit 1 to Circuit 2, the nature of the feedback changes from negative to positive. → Our assumption that the op-amp is working in the linear region does not hold for Circuit 2, and V o = − R 2 V i does not apply any more. R 1 (Circuit 2 is also useful, and we will discuss it later.) M. B. Patil, IIT Bombay

  25. Op-amp circuits (linear region) i 2 R 2 i 1 R 1 i i V o V i R L * V + ≈ V − = V i M. B. Patil, IIT Bombay

  26. Op-amp circuits (linear region) i 2 R 2 i 1 R 1 i i V o V i R L * V + ≈ V − = V i → i 1 = (0 − V i ) / R 1 = − V i / R 1 . M. B. Patil, IIT Bombay

  27. Op-amp circuits (linear region) i 2 R 2 i 1 R 1 i i V o V i R L * V + ≈ V − = V i → i 1 = (0 − V i ) / R 1 = − V i / R 1 . � − V i � � 1 + R 2 � * Since i i = 0, i 2 = i 1 → V o = V − − i 2 R 2 = V + − i 1 R 2 = V i − R 2 = V i . R 1 R 1 M. B. Patil, IIT Bombay

  28. Op-amp circuits (linear region) i 2 R 2 i 1 R 1 i i V o V i R L * V + ≈ V − = V i → i 1 = (0 − V i ) / R 1 = − V i / R 1 . � − V i � � 1 + R 2 � * Since i i = 0, i 2 = i 1 → V o = V − − i 2 R 2 = V + − i 1 R 2 = V i − R 2 = V i . R 1 R 1 * This circuit is known as the “non-inverting amplifier.” M. B. Patil, IIT Bombay

  29. Op-amp circuits (linear region) i 2 R 2 i 1 R 1 i i V o V i R L * V + ≈ V − = V i → i 1 = (0 − V i ) / R 1 = − V i / R 1 . � − V i � � 1 + R 2 � * Since i i = 0, i 2 = i 1 → V o = V − − i 2 R 2 = V + − i 1 R 2 = V i − R 2 = V i . R 1 R 1 * This circuit is known as the “non-inverting amplifier.” * Again, interchanging + and − changes the nature of the feedback from negative to positive, and the circuit operation becomes completely different. M. B. Patil, IIT Bombay

  30. Inverting or non-inverting? R 2 V s R 1 V o = − R 2 V s R 1 R L Inverting amplifier R 2 R 1 � 1 + R 2 � V o = V s V s R 1 R L Non−inverting amplifier * If the sign of the output voltage is not a concern, which configuration should be preferred?

  31. Inverting or non-inverting? R 2 i 1 R 2 V s R o R 1 V s R 1 V i V o V o = − R 2 R L V s A V V i R i R 1 R L Inverting amplifier R 2 R 1 � 1 + R 2 � V o = V s V s R 1 R L Non−inverting amplifier * If the sign of the output voltage is not a concern, which configuration should be preferred?

  32. Inverting or non-inverting? R 2 i 1 R 2 V s R o R 1 V s R 1 V i V o V o = − R 2 R L V s A V V i R i R 1 R L Inverting amplifier R 2 R 1 � 1 + R 2 � V o = V s V s R 1 R L Non−inverting amplifier * If the sign of the output voltage is not a concern, which configuration should be preferred? * For the inverting amplifier, since V − ≈ 0 V , i 1 = V s / R 1 → R in = V s / i 1 = R 1 .

  33. Inverting or non-inverting? R 2 i 1 R 2 V s R o R 1 V s R 1 V i V o V o = − R 2 R L V s A V V i R i R 1 R L Inverting amplifier R 2 R 2 R o R 1 R 1 V i V o � 1 + R 2 � R L V o = V s A V V i V s R i R 1 R L V s Non−inverting amplifier * If the sign of the output voltage is not a concern, which configuration should be preferred? * For the inverting amplifier, since V − ≈ 0 V , i 1 = V s / R 1 → R in = V s / i 1 = R 1 . M. B. Patil, IIT Bombay

  34. Inverting or non-inverting? R 2 i 1 R 2 V s R o R 1 V s R 1 V i V o V o = − R 2 R L V s A V V i R i R 1 R L Inverting amplifier R 2 R 2 R o R 1 R 1 V i V o � 1 + R 2 � R L V o = V s A V V i V s R i R 1 R L V s Non−inverting amplifier * If the sign of the output voltage is not a concern, which configuration should be preferred? * For the inverting amplifier, since V − ≈ 0 V , i 1 = V s / R 1 → R in = V s / i 1 = R 1 . R 1 * For the non-inverting amplifier, R in ∼ R i A V . Huge! R 1 + R 2 M. B. Patil, IIT Bombay

  35. Inverting and non-inverting amplifiers: summary R 2 R 2 V s V o = − R 2 � 1 + R 2 � R 1 R 1 V s V o = V s R 1 R 1 V s R L R L Inverting amplifier Non−inverting amplifier M. B. Patil, IIT Bombay

  36. Non-inverting amplifier R 2 R 1 V o V i

  37. Non-inverting amplifier V i R 2 V o R 1 V o V i R 1 R 2

  38. Non-inverting amplifier V i R 2 V o R 1 V o V i R 1 R 2 V i V o R 2 R 1

  39. Non-inverting amplifier V i R 2 V o R 1 V o V i R 1 R 2 V i V i V o V o R 2 R 2 R 1 R 1 M. B. Patil, IIT Bombay

  40. Non-inverting amplifier R 2 R 1 V o V o V i V i R L R L Consider R 1 → ∞ , R 2 → 0 . M. B. Patil, IIT Bombay

  41. Non-inverting amplifier R 2 R 1 V o V o V i V i R L R L Consider R 1 → ∞ , R 2 → 0 . V o → 1 + R 2 → 1 , i.e., V o = V i . V i R 1 M. B. Patil, IIT Bombay

  42. Non-inverting amplifier R 2 R 1 V o V o V i V i R L R L Consider R 1 → ∞ , R 2 → 0 . V o → 1 + R 2 → 1 , i.e., V o = V i . V i R 1 This circuit is known as unity-gain amplifier/voltage follower/buffer. M. B. Patil, IIT Bombay

  43. Non-inverting amplifier R 2 R 1 V o V o V i V i R L R L Consider R 1 → ∞ , R 2 → 0 . V o → 1 + R 2 → 1 , i.e., V o = V i . V i R 1 This circuit is known as unity-gain amplifier/voltage follower/buffer. What has been achieved? M. B. Patil, IIT Bombay

  44. Loading effects R o R s V i V o V s R L A V V i R i Consider an amplifier of gain A V . We would like to have V o = A V V s . M. B. Patil, IIT Bombay

  45. Loading effects R o R s V i V o V s R L A V V i R i Consider an amplifier of gain A V . We would like to have V o = A V V s . However, the actual output voltage is, R L R L R i V o = A V V i = A V V s . R o + R L R o + R L R i + R s M. B. Patil, IIT Bombay

  46. Loading effects R o R s V i V o V s R L A V V i R i Consider an amplifier of gain A V . We would like to have V o = A V V s . However, the actual output voltage is, R L R L R i V o = A V V i = A V V s . R o + R L R o + R L R i + R s To obtain the desired V o , we need R i → ∞ and R o → 0 . M. B. Patil, IIT Bombay

  47. Loading effects R o R s V i V o V s R L A V V i R i Consider an amplifier of gain A V . We would like to have V o = A V V s . However, the actual output voltage is, R L R L R i V o = A V V i = A V V s . R o + R L R o + R L R i + R s To obtain the desired V o , we need R i → ∞ and R o → 0 . The buffer (voltage follower) provides these features. M. B. Patil, IIT Bombay

  48. Op-amp buffer: input resistance R 2 R 2 B A R o R 1 R 1 V i � 1 + R 2 � R L V o = V s A V V i V S R i R 1 I S R L V S Non−inverting amplifier M. B. Patil, IIT Bombay

  49. Op-amp buffer: input resistance R 2 R 2 B A R o R 1 R 1 V i � 1 + R 2 � R L V o = V s A V V i V S R i R 1 I S R L V S Non−inverting amplifier V B + V B − A V V i + V B − V A KCL at B: = 0. R L R o R 2 M. B. Patil, IIT Bombay

  50. Op-amp buffer: input resistance R 2 R 2 B A R o R 1 R 1 V i � 1 + R 2 � R L V o = V s A V V i V S R i R 1 I S R L V S Non−inverting amplifier V B + V B − A V V i + V B − V A KCL at B: = 0. R L R o R 2 I S = V A + V A − V B Source current: . R 1 R 2 M. B. Patil, IIT Bombay

  51. Op-amp buffer: input resistance R 2 R 2 B A R o R 1 R 1 V i � 1 + R 2 � R L V o = V s A V V i V S R i R 1 I S R L V S Non−inverting amplifier V B + V B − A V V i + V B − V A KCL at B: = 0. R L R o R 2 I S = V A + V A − V B Source current: . R 1 R 2 Using V i = I S R i , V A = V S − V i , and after some algebra, we get �� 1 � � + 1 � � � � 1 + R o + R o 1 + R o + R o − R o + A V + R i R 2 R L R 2 R 1 R 2 R L R 2 R 2 R in = V S 2 = . � 1 I S + 1 � � 1 + R o + R o � − R o R 2 R 1 R 2 R L R 2 2 M. B. Patil, IIT Bombay

  52. Op-amp buffer: input resistance R 2 R 2 B A R o R 1 R 1 V i � 1 + R 2 � R L V o = V s A V V i V S R i R 1 I S R L V S Non−inverting amplifier V B + V B − A V V i + V B − V A KCL at B: = 0. R L R o R 2 I S = V A + V A − V B Source current: . R 1 R 2 Using V i = I S R i , V A = V S − V i , and after some algebra, we get �� 1 � � + 1 � � � � 1 + R o + R o 1 + R o + R o − R o + A V + R i R 2 R L R 2 R 1 R 2 R L R 2 R 2 R in = V S STOP 2 = . � 1 I S + 1 � � 1 + R o + R o � − R o R 2 R 1 R 2 R L R 2 2 M. B. Patil, IIT Bombay

  53. Non-inverting amplifier: input resistance (continued) R 2 R 2 B A R o R 1 R 1 V i � � R L 1 + R 2 V o = V s A V V i V S R i R 1 I S R L Non−inverting amplifier V S �� 1 � 1 + R o + R o � + 1 � � 1 + R o + R o � − R o + A V � + R i R 2 R in = V S R L R 2 R 1 R 2 R L R 2 R 2 2 = . � 1 I S + 1 � � 1 + R o + R o � − R o R 2 R 1 R 2 R L R 2 2 M. B. Patil, IIT Bombay

  54. Non-inverting amplifier: input resistance (continued) R 2 R 2 B A R o R 1 R 1 V i � � R L 1 + R 2 V o = V s A V V i V S R i R 1 I S R L Non−inverting amplifier V S �� 1 � 1 + R o + R o � + 1 � � 1 + R o + R o � − R o + A V � + R i R 2 R in = V S R L R 2 R 1 R 2 R L R 2 R 2 2 = . � 1 I S + 1 � � 1 + R o + R o � − R o R 2 R 1 R 2 R L R 2 2 Since R o is much smaller than R 1 , R 2 , R L , or R i , �� 1 � R 1 + R 2 + 1 � + A V � + A V � 1 + R i R i R 1 R 2 R 2 R 1 R 2 R 2 R 1 R in ≈ ≈ ≈ A V R i . � 1 R 1 + R 2 + 1 � R 1 + R 2 R 1 R 2 R 1 R 2 M. B. Patil, IIT Bombay

  55. Op-amp buffer: input resistance R o V o = V s V i R L A V V i V s R i I S R L V S Buffer M. B. Patil, IIT Bombay

  56. Op-amp buffer: input resistance R o V o = V s V i R L A V V i V s R i I S R L V S Buffer Let R o → 0. M. B. Patil, IIT Bombay

  57. Op-amp buffer: input resistance R o V o = V s V i R L A V V i V s R i I S R L V S Buffer Let R o → 0. V S = V i + A V V i = V i (1 + A V ) . M. B. Patil, IIT Bombay

  58. Op-amp buffer: input resistance R o V o = V s V i R L A V V i V s R i I S R L V S Buffer Let R o → 0. V S = V i + A V V i = V i (1 + A V ) . I S = V i . R i M. B. Patil, IIT Bombay

  59. Op-amp buffer: input resistance R o V o = V s V i R L A V V i V s R i I S R L V S Buffer Let R o → 0. V S = V i + A V V i = V i (1 + A V ) . I S = V i . R i → R in = V S = R i ( A V + 1) I S M. B. Patil, IIT Bombay

  60. Op-amp buffer: output resistance R 2 R 2 R o R 1 R 1 V o V i R L A V V i V s R i R L V s R out Non−inverting amplifier To find R out , * Deactivate the input source. M. B. Patil, IIT Bombay

  61. Op-amp buffer: output resistance R 2 R 2 R o R 1 R 1 V o V i R L A V V i V s R i R L V s R out Non−inverting amplifier To find R out , * Deactivate the input source. * Replace R L with a test source V ′ . M. B. Patil, IIT Bombay

  62. Op-amp buffer: output resistance R 2 R 2 R o R 1 R 1 V o V i R L A V V i V s R i R L V s R out Non−inverting amplifier To find R out , * Deactivate the input source. * Replace R L with a test source V ′ . * Find the current ( I ′ ) through V ′ . M. B. Patil, IIT Bombay

  63. Op-amp buffer: output resistance R 2 R 2 R o R 1 R 1 V o V i R L A V V i V s R i R L V s R out Non−inverting amplifier To find R out , * Deactivate the input source. * Replace R L with a test source V ′ . * Find the current ( I ′ ) through V ′ . * R out = V ′ I ′ . M. B. Patil, IIT Bombay

  64. Op-amp buffer: output resistance (continued) I 2 R 2 I ′ R 2 A V V i V ′ − V i R 1 R o I 1 R 1 V o V ′ V i A V V i V s R i R L Non−inverting amplifier M. B. Patil, IIT Bombay

  65. Op-amp buffer: output resistance (continued) I 2 R 2 I ′ R 2 A V V i V ′ − V i R 1 R o I 1 R 1 V o V ′ V i A V V i V s R i R L Non−inverting amplifier ( R i � R 1 ) R 2 + ( R i � R 1 ) V ′ ≡ − kV ′ . V i = − M. B. Patil, IIT Bombay

  66. Op-amp buffer: output resistance (continued) I 2 R 2 I ′ R 2 A V V i V ′ − V i R 1 R o I 1 R 1 V o V ′ V i A V V i V s R i R L Non−inverting amplifier ( R i � R 1 ) R 2 + ( R i � R 1 ) V ′ ≡ − kV ′ . V i = − I ′ = I 1 + I 2 = V ′ − A V V i + V ′ − ( − V i ) = 1 + 1 V ′ + kA V V ′ � V ′ − kV ′ � � � . R o R 2 R o R 2 M. B. Patil, IIT Bombay

  67. Op-amp buffer: output resistance (continued) I 2 R 2 I ′ R 2 A V V i V ′ − V i R 1 R o I 1 R 1 V o V ′ V i A V V i V s R i R L Non−inverting amplifier ( R i � R 1 ) R 2 + ( R i � R 1 ) V ′ ≡ − kV ′ . V i = − I ′ = I 1 + I 2 = V ′ − A V V i + V ′ − ( − V i ) = 1 + 1 V ′ + kA V V ′ � V ′ − kV ′ � � � . R o R 2 R o R 2 I ′ (1 − k ) → R out = V ′ V ′ = 1 (1 + kA V ) + 1 R o R 2 R o I ′ = (1 + kA V ) � (1 − k ) ≈ R o R 2 (1 + kA V ) M. B. Patil, IIT Bombay

  68. Op-amp buffer: output resistance (continued) I 2 R 2 I ′ R 2 A V V i V ′ − V i R 1 R o I 1 R 1 V o V ′ V i A V V i V s R i R L Non−inverting amplifier ( R i � R 1 ) R 2 + ( R i � R 1 ) V ′ ≡ − kV ′ . V i = − I ′ = I 1 + I 2 = V ′ − A V V i + V ′ − ( − V i ) = 1 + 1 V ′ + kA V V ′ � V ′ − kV ′ � � � . R o R 2 R o R 2 I ′ (1 − k ) → R out = V ′ V ′ = 1 (1 + kA V ) + 1 R o R 2 R o I ′ = (1 + kA V ) � (1 − k ) ≈ R o R 2 (1 + kA V ) Special case: Op-amp buffer ( R i � R 1 ) R o k = R 2 + ( R i � R 1 ) → 1 ⇒ R out ≈ 1 + A V M. B. Patil, IIT Bombay

  69. Op-amp buffer V s R L V s V s R L R in R out In summary, the buffer (voltage follower) provides M. B. Patil, IIT Bombay

  70. Op-amp buffer V s R L V s V s R L R in R out In summary, the buffer (voltage follower) provides * a large input resistance R in as seen from the source. M. B. Patil, IIT Bombay

  71. Op-amp buffer V s R L V s V s R L R in R out In summary, the buffer (voltage follower) provides * a large input resistance R in as seen from the source. * a small output resistance R out as seen from the load. M. B. Patil, IIT Bombay

  72. Op-amp buffer V s R L V s V s R L R in R out In summary, the buffer (voltage follower) provides * a large input resistance R in as seen from the source. * a small output resistance R out as seen from the load. * a gain of 1, i.e., the output voltage simply follows the input voltage. M. B. Patil, IIT Bombay

  73. Loading effects (revisited) R s R o V s V i V o R L R i A V V i Problem: We would like to have V o = A V V s . M. B. Patil, IIT Bombay

  74. Loading effects (revisited) R s R o V s V i V o R L R i A V V i Problem: We would like to have V o = A V V s . But the actual output voltage is, R L R L R i V o = A V V i = A V V s . R o + R L R o + R L R i + R s M. B. Patil, IIT Bombay

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend