on the total variation distance of smcs
play

On the Total Variation Distance of SMCs Giorgio Bacci, Giovanni - PowerPoint PPT Presentation

On the Total Variation Distance of SMCs Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, Radu Mardare Aalborg University, Denmark 17 December 2014 - Bologna, Italy FOCUS seminars 1/28 Before to start... Given , : + measures on


  1. On the Total Variation Distance of SMCs Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, Radu Mardare Aalborg University, Denmark 17 December 2014 - Bologna, Italy FOCUS seminars 1/28

  2. Before to start... Given μ , ν : Σ → ℝ + measures on (X, Σ ) Total Variation Distance || μ - ν || = sup | μ (E) - ν (E)| E ∈ Σ 2/28

  3. Before to start... Given μ , ν : Σ → ℝ + measures on (X, Σ ) Total Variation Distance || μ - ν || = sup | μ (E) - ν (E)| E ∈ Σ The largest possible difference that μ and ν assign to the same event 2/28

  4. Outline • Semi-Markov Chains (SMCs) • Total Variation vs Model Checking of SMCs • An Approximation Algorithm • Concluding Remarks 3/28

  5. semi-Markov Chains 1 1/3 1/3 s 0 s 2 s 1 1/3 2/3 1/3 1 s 3 s 4 1 4/28

  6. semi-Markov Chains 1 1/3 1/3 s 0 s 2 s 1 p,r q p,r 1/3 2/3 1/3 1 s 3 s 4 q,r q,r 1 4/28

  7. semi-Markov Chains 1 Exp(3) 1/3 1/3 s 0 s 2 s 1 p,r q p,r 1/3 2/3 1/3 1 s 3 s 4 q,r q,r 1 4/28

  8. semi-Markov Chains N(2,3) 1 Exp(3) Exp(3) 1/3 1/3 s 0 s 2 s 1 p,r q p,r 1/3 2/3 1/3 1 U(2) U(2) s 3 s 4 q,r q,r 1 4/28

  9. semi-Markov Chains N(2,3) 1 Exp(3) Exp(3) 1/3 1/3 s 0 s 2 s 1 p,r q p,r 1/3 2/3 1/3 1 U(2) U(2) s 3 s 4 q,r q,r 1 Given an initial state, SMCs can be interpreted as “machines” that emit timed traces of states with a certain probability 4/28

  10. Timed paths & Events t n-1 t 0 ... π : 𝕯 ( S 0 , R 0 , ... , R n-1 , S n ) ∈ s n-1 s n s 0 s 1 “probability that, starting from s , P[s]( 𝕯 ( S 0 , R 0 , ... , R n-1 , S n )) = the SMC emits a timed path with prefix in S 0 × R 0 × ... × R n-1 × S n ” 5/28

  11. Timed paths & Events residence-time t n-1 t 0 ... π : 𝕯 ( S 0 , R 0 , ... , R n-1 , S n ) ∈ s n-1 s n s 0 s 1 “probability that, starting from s , P[s]( 𝕯 ( S 0 , R 0 , ... , R n-1 , S n )) = the SMC emits a timed path with prefix in S 0 × R 0 × ... × R n-1 × S n ” 5/28

  12. Timed paths & Events Cylinder set residence-time (s i ∈ S i , t i ∈ R i and R i Borel set) t n-1 t 0 ... π : 𝕯 ( S 0 , R 0 , ... , R n-1 , S n ) ∈ s n-1 s n s 0 s 1 “probability that, starting from s , P[s]( 𝕯 ( S 0 , R 0 , ... , R n-1 , S n )) = the SMC emits a timed path with prefix in S 0 × R 0 × ... × R n-1 × S n ” 5/28

  13. Probabilistic Trace Equiv. N(2,3) 1 Exp(3) Exp(3) 1/3 1/3 s 0 s 2 s 1 p,r q p,r 1/3 2/3 1/3 1 U(2) U(2) s 3 s 4 q,r q,r 1 6/28

  14. Probabilistic Trace Equiv. N(2,3) 1 Exp(3) Exp(3) 1/3 1/3 s 0 s 2 s 1 p,r p,r q 1/3 2/3 1/3 1 U(2) U(2) s 3 s 4 q,r q,r 1 6/28

  15. Probabilistic Trace Equiv. N(2,3) 1 Exp(3) Exp(3) 1/3 1/3 s 0 s 2 s 1 p,r p,r q 1/3 2/3 1/3 1 U(2) U(2) s 3 s 4 q,r q,r 1 P[ s 0 ]( 𝕯 ( , R 0 , ... , R n-1 , )) = P[ s 1 ]( 𝕯 ( , R 0 , ... , R n-1 , )) L n L 0 L 0 L n 6/28

  16. Probabilistic Trace Equiv. N(2,3) 1 Exp(3) Exp(3) 1/3 1/3 s 0 s 2 s 1 p,r p,r q 1/3 2/3 1/3 1 U(2) U(2) s 3 s 4 q,r q,r Trace Cylinders (up to label equiv.) 1 P[ s 0 ]( 𝕯 ( , R 0 , ... , R n-1 , )) = P[ s 1 ]( 𝕯 ( , R 0 , ... , R n-1 , )) L n L 0 L 0 L n 6/28

  17. Probabilistic Trace Equiv. N(2,3) 1 Exp(3) Exp(3) 1/3+ ε 1/3 s 0 s 2 s 1 p,r q p,r 1/3 2/3- ε 1/3 1 U(2) U(2) s 3 s 4 q,r q,r 1 P[ s 0 ]( 𝕯 ( , ℝ , ,)) =1/3+ ε ≠ 1/3 = P[ s 1 ] ( 𝕯 ( , ℝ , ,)) p,r q p,r q 7/28

  18. Probabilistic Trace Equiv. N(2,3) 1 Exp(3) Exp(3) 1/3+ ε 1/3 s 0 s 2 s 1 FRAGILE p,r q p,r 1/3 2/3- ε 1/3 1 U(2) U(2) s 3 s 4 q,r q,r 1 P[ s 0 ]( 𝕯 ( , ℝ , ,)) =1/3+ ε ≠ 1/3 = P[ s 1 ] ( 𝕯 ( , ℝ , ,)) p,r q p,r q 7/28

  19. Trace Pseudometric d(s,s’) = sup |P[s](E) - P[s’](E)| E ∈ σ ( 𝓤 ) σ -algebra generated from Trace Cylinders 8/28

  20. Trace Pseudometric d(s,s’) = sup |P[s](E) - P[s’](E)| E ∈ σ ( 𝓤 ) σ -algebra generated from Trace Cylinders It’s a Behavioral Distance! d(s,s’) = 0 iff s ≈ s’ T 8/28

  21. Distance = Approx. Error 9/28

  22. ? Distance = Approx. Error 9/28

  23. ? Distance = Approx. Error Example: Probabilistic Model Checking probability of M 0 satisfying φ P[M 0 ]({s ⊨ φ }) 0 1 9/28

  24. ? Distance = Approx. Error Example: Probabilistic Model Checking probability of M 0 M 1 satisfying φ P[M 1 ]({s ⊨ φ }) P[M 0 ]({s ⊨ φ }) 0 1 |P[M 0 ]({s ⊨ φ }) - P[M 0 ]({s ⊨ φ })| 9/28

  25. ? Distance = Approx. Error Example: Probabilistic Model Checking ε probability of M 0 M 1 satisfying φ P[M 1 ]({s ⊨ φ }) P[M 0 ]({s ⊨ φ }) 0 1 |P[M 0 ]({s ⊨ φ }) - P[M 0 ]({s ⊨ φ })| 9/28

  26. ? Distance = Approx. Error Example: Probabilistic Model Checking ε probability of M 0 M 1 satisfying φ P[M 1 ]({s ⊨ φ }) P[M 0 ]({s ⊨ φ }) distance bounds 0 1 ε ε the abs. error |P[M 0 ]({s ⊨ φ }) - P[M 0 ]({s ⊨ φ })| ≤ ε 9/28

  27. Trace Distance vs. Model Checking (i.e., does it provide a good approximation error?) 10/28

  28. Model Checking SMCs i.e., measuring the likelihood that a a linear real-time property is satisfied by the SMC SMC ⊨ Linear Real-time Spec. 11/28

  29. Model Checking SMCs i.e., measuring the likelihood that a a linear real-time property is satisfied by the SMC SMC ⊨ Linear Real-time Spec. represented as Metric Temporal Logic formulas 11/28

  30. Model Checking SMCs i.e., measuring the likelihood that a a linear real-time property is satisfied by the SMC SMC ⊨ Linear Real-time Spec. ... or languages represented as recognized Metric Temporal Logic by Timed Automata formulas 11/28

  31. Model Checking SMCs i.e., measuring the likelihood that a a linear real-time property is satisfied by the SMC a proper measurable set! SMC ⊨ Linear Real-time Spec. ... or languages represented as recognized Metric Temporal Logic by Timed Automata formulas 11/28

  32. (Alur-Henzinger) Metric Temporal Logic Next Until φ ≔ p | ⊥ | φ→φ | X φ | φ U φ I I (*) I ⊆ ℝ closed interval with rational endpoints 12/28

  33. (Alur-Henzinger) Metric Temporal Logic Next Until φ ≔ p | ⊥ | φ→φ | X φ | φ U φ I I (*) I ⊆ ℝ closed interval with rational endpoints ψ within time t ∈ I ... t i-1 ∈ I t 0 + + φ U ψ I π : ⊨ ... φ φ ψ φ 12/28

  34. MTL distance (max error w.r.t. MTL properties) set of timed paths that satisfy φ MTL(s,s’) = sup |P[s]({ π ⊨ φ }) - P[s’]({ π ⊨ φ })| φ ∈ MTL 13/28

  35. MTL distance (max error w.r.t. MTL properties) measurable set of timed paths in σ ( 𝓤 ) that satisfy φ MTL(s,s’) = sup |P[s]({ π ⊨ φ }) - P[s’]({ π ⊨ φ })| φ ∈ MTL Relation with Trace Distance MTL(s,s’) ≤ d(s,s’) = sup |P[s](E) - P[s’](E)| E ∈ σ ( 𝓤 ) 13/28

  36. MTL distance (max error w.r.t. MTL properties) measurable set of timed paths in σ ( 𝓤 ) that satisfy φ MTL(s,s’) = sup |P[s]({ π ⊨ φ }) - P[s’]({ π ⊨ φ })| φ ∈ MTL Relation with Trace Distance = MTL(s,s’) ≤ d(s,s’) = sup |P[s](E) - P[s’](E)| E ∈ σ ( 𝓤 ) 13/28

  37. (Alur-Dill) (Muller)Timed Automata without invariants Clocks = {x,y} q x ≥ 1/4, {x} p,r Clock Guards ℓ 1 x ≥ 5, {x} g ≔ x ⋈ q | g ∧ g q p,r ℓ 0 for ⋈ ∈ {<, ≤ ,>, ≥ }, q ∈ ℚ y ≤ 1/2 x ≤ 1/2 ℓ 2 p,r , x<3, {y} accepted! p,r q q , 1/2 , 2 , 1/2 x=0 x=2 x=2.5 ( ℓ 0 , ) ( ℓ 2 , ) ( ℓ 1 , ) ... y=0 y=0 y=0.5 14/28

  38. TA distance (max error w.r.t. timed regular properties) set of timed paths accepted by 𝓑 TA(s,s’) = sup |P[s]({ π ∈ L( 𝓑 )}) - P[s’]({ π ∈ L( 𝓑 )})| 𝓑 ∈ TA 15/28

  39. TA distance (max error w.r.t. timed regular properties) measurable set of timed paths in σ ( 𝓤 ) accepted by 𝓑 TA(s,s’) = sup |P[s]({ π ∈ L( 𝓑 )}) - P[s’]({ π ∈ L( 𝓑 )})| 𝓑 ∈ TA Relation with Trace Distance TA(s,s’) ≤ d(s,s’) = sup |P[s](E) - P[s’](E)| E ∈ σ ( 𝓤 ) 15/28

  40. TA distance (max error w.r.t. timed regular properties) measurable set of timed paths in σ ( 𝓤 ) accepted by 𝓑 TA(s,s’) = sup |P[s]({ π ∈ L( 𝓑 )}) - P[s’]({ π ∈ L( 𝓑 )})| 𝓑 ∈ TA Relation with Trace Distance = TA(s,s’) ≤ d(s,s’) = sup |P[s](E) - P[s’](E)| E ∈ σ ( 𝓤 ) 15/28

  41. The theorem behind... For μ , ν : Σ → ℝ + finite measures on (X, Σ ) and F ⊆ Σ field such that σ (F)= Σ Representation Theorem || μ - ν || = sup | μ (E) - ν (E)| E ∈ F 16/28

  42. The theorem behind... For μ , ν : Σ → ℝ + finite measures on (X, Σ ) and F ⊆ Σ field such that σ (F)= Σ Representation Theorem || μ - ν || = sup | μ (E) - ν (E)| E ∈ F F is much simpler than Σ , nevertheless it suffices to attain the supremum! 16/28

  43. A series of characterizations MTL(s,s’) = MTL (s,s’) ¬U TA(s,s’) = DTA(s,s’) = 1-DTA(s,s’) = 1-RDTA(s,s’) 17/28

  44. A series of characterizations max error w.r.t. φ ∈ MTL without Until MTL(s,s’) = MTL (s,s’) ¬U TA(s,s’) = DTA(s,s’) = 1-DTA(s,s’) = 1-RDTA(s,s’) 17/28

  45. A series of characterizations max error w.r.t. φ ∈ MTL without Until MTL(s,s’) = MTL (s,s’) ¬U max error w.r.t. Deterministic TAs TA(s,s’) = DTA(s,s’) = 1-DTA(s,s’) = 1-RDTA(s,s’) 17/28

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend