braids and their seifert surfaces andrew ranicki
play

BRAIDS AND THEIR SEIFERT SURFACES Andrew Ranicki (Edinburgh) - PowerPoint PPT Presentation

1 BRAIDS AND THEIR SEIFERT SURFACES Andrew Ranicki (Edinburgh) http://www.maths.ed.ac.uk/ aar Drawings by Carmen Rovi NUI, Maynooth 7th May, 2014 2 A braid in the Book of Kells 3 The mathematical definition of a braid Fix n 2


  1. 1 BRAIDS AND THEIR SEIFERT SURFACES Andrew Ranicki (Edinburgh) http://www.maths.ed.ac.uk/ � aar Drawings by Carmen Rovi NUI, Maynooth 7th May, 2014

  2. 2 A braid in the Book of Kells

  3. 3 The mathematical definition of a braid ◮ Fix n � 2 and n distinct points z 1 , z 2 , . . . , z n ∈ D 2 . ◮ An n -strand braid β is an embedding � I = { 1 , 2 , . . . , n } × I ⊂ D 2 × I ; ( k , t ) �→ β ( k , t ) β : n such that each of the composites β ( k , − ) � D 2 × I projection � I (1 � k � n ) I is a homeomorphism, and β ( k , 0) = ( z k , 0) ∈ D 2 ×{ 0 } , β ( k , 1) = ( z σ ( k ) , 1) ∈ D 2 ×{ 1 } for a permutation σ ∈ Σ n of { 1 , 2 , . . . , n } . ◮ β defines n disjoint forward paths t �→ β ( k , t ) in D 2 × I ⊂ R 3 from ( z k , 0) to ( z σ ( k ) , 1), such that each section β ( { 1 , 2 , . . . , n } × I ) ∩ ( D 2 × { t } ) ( t ∈ I ) consists of n points.

  4. 4 An example of a 3-strand braid with σ = (132) Z Z Z 1 2 3 2 D X {0} β 2 D X I 2 D X {1} Z Z Z 2 3 1

  5. 5 A braid drawn by Gauss (1833) ◮ ◮ Further 19th century developments: Listing, Tait, Hurwitz. ◮ See Moritz Epple’s history paper Orbits of asteroids, a braid, and the first link invariant, Mathematical Intelligencer, 20, 45-52 (1996)

  6. 6 Concatenation of braids ◮ The concatenation of n -strand braids β, β ′ is the n -strand braid � I ⊂ D 2 × I ⊂ R 3 β ′ β : n defined by � β ( k , 2 t ) if 0 � t � 1 / 2 ( β ′ β )( k , t ) = β ′ ( k , 2 t − 1) if 1 / 2 � t � 1 for 1 � k � n , t ∈ I , with permutation the composite σ ′ σ .

  7. 7 An example of concatenation Z Z Z 1 2 3 β β ’ β β ’ Z Z Z 1 2 3

  8. 8 Isotopy of braids ◮ Two n -strand braids � I ⊂ D 2 × I β 0 , β 1 : n are isotopic if there exist braids � I ⊂ D 2 × I ( s ∈ I ) β s : n such that the function � I → D 2 × I ; ( s , k , t ) �→ β s ( k , t ) I × n is continuous. ◮ Same permutations σ 0 = σ s = σ 1 ∈ Σ n . ◮ Braid applet

  9. Theorie der Z6pfe. 49 aus den Definitionen hervorgeht, daft bei diesem Prozess der ite Faden yon Z~ nicht notwendig mit dem i t~ Faden yon Z~ zu verkntipfen ist. 1st vielmehr #~ die Verbindung yon A~ und B,.,, so hat man ja B,., mit dem Punkt A', yon Z2 zusammenfallen zu lassen, so daft ~i mit dem Faden #', yon Z~ verkniipft wird. In Fig. 2 ist z. B. der erste Faden 9 yon Z~ mit dem ch'itten Faden yon Z~ verbunden. Das assoziative Gesetz Artin ◮ Emil Artin founded the modern theory of braids in Theorie der (1) (z, z,) -- (z, z,) Z¨ opfe (1925), defining the n -strand braid group B n : the set of isotopy classes of n -strand braids under concatenation. ffir unsere Komposition leuchtet unmittelbar ein. Denn offenbar erscheint ◮ A trivial braid, a braid with an overcrossing and a braid with derselbe Zopf, wenn man an Z~ den bereits verknfipften Z~Z..~ anh~tngt an undercrossing oder abet an ZL den Zopf Z2 und an das Kompositionsresultat Z..~. Dagegen ist im allgemeinen die Reihenfolge von Z~ �9 undZ~ wesentlich' d'h" es gilt nicht das k~ l m Gesetz. u t a t i v e l l l Die einfachsten Typen von Z0pfen T/ter Ordnung sind in Fig. 3 dargestellt. Wit haben: I X ] " 1. Den Zopf E, bei dem der Punkt Ai mit Bi verbunde~ ist und die F~den t~ miteinander nicht verschlungen sind. (Bei passender Deformation schneiden sich dann dieProjektionen unsererKurven l X ] ~ nicht.) Ersichtlich gilt, wenn Z ein beliebiger Zopf ist: Fig. 3. zE = EZ Z. Unser Zorf E spielt also die Rolle der Einheit und werde deshalb auch einfach mit 1 bezeichnet. 2. Der Zopf (ri, bei dem A~ mit B~+I und Ai+l mit Bi verbunden ist. wobei der z ~e Faden einmal /tber dem (i+ 1) ten Faden li~uft, die iibrigen Faden aber wie bei E laufen. (Also unverschlungen yon A,. nach Br.) 3. Der Zopf %-1, b ei dem derselbe Sachverhalt wie bei a/ vorliegt, nur dal3 der ite Faden einmal unter dem (i+ 1) t~n lauft. Komponiert man den Zopf ~ mit ai -1, so kann man den ~en Faden v0m (i~-1) ten herunterheben, erhiilt also den Zopf E. Ebenso wenn a-i mit % komponiert wird. Es gilt also: (3) a i. a. -1 ----- a: a. a. = 1. Aus diesem Grunde wurde der dritte Typus a/-~ genannt.

  10. 10 The n -strand braids σ 0 , σ 1 , . . . , σ n − 1 ◮ The trivial n -strand braid is � I ⊂ D 2 × I ; t i �→ ( z i , t i ) σ 0 : n i i i+1 i+1 ◮ For i = 1 , 2 , . . . , n − 1 the elementary n -strand braid σ i is obtained from σ 0 by introducing an overcrossing of the i th strand and the ( i + 1)th strand, with permutation ( i i + 1) ∈ Σ n . i i+1 i+1 i ◮ The elementary n -strand braid σ − 1 is defined in the same i way but with an under crossing. i i+1 i+1 i

  11. 11 The n -strand braid group B n ◮ The concatenation of two n -strand braids β, β ′ is the n -strand braid ββ ′ obtained by identifying β (1 i ) = β ′ (0 i ). ◮ B n is the set of isotopy classes of n -strand braids β , with composition by concatenation, and unit σ 0 . ◮ B n has generators σ 1 , σ 2 , . . . , σ n − 1 and relations � σ i σ j = σ j σ i if | i − j | � 2 σ i σ j σ i = σ j σ i σ j if | i − j | = 1 . ◮ Every n -strand braid β is represented by a word in B n in ℓ generators, corresponding to a sequence of ℓ crossings in a plane projection. ◮ The concatenation βσ i is obtained from β by adding to the sequence a crossing of the i th strand over the ( i + 1)th strand. ◮ The representation theory of the braid groups much studied. Highlight: the Jones polynomial.

  12. 12 The closure of a braid ◮ The closure of an n -strand braid β is the c -component link � � � S 1 ⊂ R 3 � β = β ∪ σ 0 : I ∪ σ I = n n c with c = |{ 1 , 2 , . . . , n } /σ | the number of cycles in σ ∈ Σ n . ◮ Alexander proved in A lemma on systems of knotted curves (1923) that every link is the closure � β of a braid β . ◮ Example A braid representation of the figure eight knot, with 3 strands and 4 crossings 3 2 1 −1 −1 σ 1 σ 2 σ 1 σ 2

  13. 13 The closure of σ 1 σ 1 is the Hopf link i+1 i i+1 i The 2-strand braid β = σ σ 1 1 The closure β = Hopf link

  14. 14 The Seifert surfaces of a link ◮ A Seifert surface for a link � S 1 ⊂ R 3 L : is a surface F 2 ⊂ R 3 with boundary � S 1 ) ⊂ R 3 . ∂ F = L ( ◮ Seifert in ¨ Uber das Geschlecht von Knoten (1935) proved that every link L admits a Seifert surface of the type � � D 2 ∪ D 1 × D 1 ⊂ R 3 F = n ℓ using an algorithm starting with a plane projection. ◮ A link L has many projections, and many Seifert surfaces.

  15. 15 The algorithm for a Seifert surface ◮ For any link L : � S 1 ⊂ R 3 there exists a linear map P : R 3 → R 2 (many in fact) such that the image of the composite PL : � S 1 → R 2 is a collection of oriented curves with ℓ transverse double points labelled as over/underpasses. This is a plane projection of L . ◮ Given L and a plane projection traverse the curves, switching each intersection according to over/underpasses, giving n “Seifert circles”. Construct a Seifert surface with n 0-handles and ℓ 1-handles � � D 2 ∪ D 1 × D 1 ⊂ R 3 F = n ℓ with � S 1 ) ⊂ R 3 . ∂ F = L (

  16. 16 Examples of Seifert’s algorithm for knots ◮ ◮

  17. 17 The canonical Seifert surface F β of a braid ◮ An n -strand braid β with ℓ crossings is represented by a word in B n of length ℓ in the generators σ 1 , σ 2 , . . . , σ n − 1 , so that β = β 1 β 2 . . . β ℓ is the concatenation of ℓ elementary braids. ◮ Stallings in Constructions of fibred knots and links (1978) observed that the closure � β has a canonical projection with n Seifert circles and ℓ intersections, and hence a canonical Seifert surface with n 0-handles and ℓ 1-handles � � D 2 ∪ D 1 × D 1 ⊂ R 3 . F β = n ℓ ◮ Lemma F β is homotopy equivalent to the CW complex � n � ℓ e 0 e 1 X β = i ∪ j i =1 j =1 with ∂ e 1 j = e 0 i ∪ e 0 i +1 if j th crossing is between strands i , i + 1 H 1 ( F β ) = H 1 ( X β ) = ker( d : C 1 ( X β ) → C 0 ( X β )) = ker( d : Z ℓ → Z n ) = Z m .

  18. 18 An example of the canonical Seifert surface F β for the closure � β of a braid β 3 3 1 2 1 2

  19. 19 SeifertView ◮ Arjeh Cohen and Jack van Wijk wrote a programme SeifertView (2005) and a paper The visualization of Seifert surfaces (2006) for drawing the canonical Seifert surfaces F β of the closures � β of braids β . ◮ A screenshot ◮ Try the SeifertView rollercoaster!

  20. 20 More braids β and canonical Seifert surfaces F β I. σ σ 1 0 σ σ 0 1 F F σ σ 0 1

  21. 21 More braids β and canonical Seifert surfaces F β II. σ σ σ σ σ 1 1 1 1 1 σ σ σ σ σ 1 1 1 1 1 F F σ σ σ σ 1 σ 1 1 1 1

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend