on the role of galaxies and agn in reionising the igm
play

On the Role of Galaxies and AGN in Reionising the IGM: - PowerPoint PPT Presentation

On the Role of Galaxies and AGN in Reionising the IGM: spectroscopic survey of 5<z<7 galaxies in QSO fields s Koki Kakiichi University College London With Richard Ellis, Nicolas Laporte, Adi Zitrin, Anna-Christina Eilers, Emma


  1. On the Role of Galaxies and AGN in Reionising the IGM: spectroscopic survey of 5<z<7 galaxies in QSO fields s Koki Kakiichi University College London With Richard Ellis, Nicolas Laporte, Adi Zitrin, Anna-Christina Eilers, Emma Ryan-Weber, Romain Meyer, Brant Robertson, Dan Stark, Sarah Bosman Sakura CLAW @ Tokyo 2018

  2. Epoch of Cosmic Dawn & Reionization Gunn & Peterson (1965) paper z=1100 (CMB) first stars assemble to reionization z~20-30 first galaxies z~6-18 “Long-standing questions in observational cosmology” 50 years old problem! When did reionization happen? What reionized the Universe?

  3. What reionized the universe? Problem 1 ✔ Hubble+Planck Becker+2015 Robertson+2015 1. HST galaxy demographics can drive reionisation but “Unknown f esc ” Robertson+15

  4. What reionized the universe? Problem 2 Transmission spikes Gunn-Peterson trough UV background Temperature Becker+15 Also Bosman & Chardin’s talks 2. Huge variation of the intergalactic Lyman alpha optical depth at z>5.5 Difficult with faint galaxies.. Luminous systems? thermal fluctuations?

  5. Testing what reionized the universe: Probing the direct influence of galaxies on the Ly α forest at z>5 Becker+2015 z>6 Spectroscopic survey of Ly α emitting galaxies in QSO fields Galaxy spectra QSO QSO absorption spectra Ly α Ly α emission & absorption HII HI Post-reionized IGM small-scale absorbers “Ly α probing Ly α ” A reionisation-era extension of idea in Keck Baryonic Structure Survey (Steidel et al) e.g. Rudie+12, Turner+14 and Quasar Probing Quasar Survey (Hennawi & Prochaska et al) e.g. Prochaska+13, Schmidt+17

  6. Keck spectroscopy of 5<z<7 galaxies around the Ly ɑ forest of a background QSO field Survey design: DEIMOS spectroscopy of bright LBGs (r- and i-dropouts, z mag < 25.5) in the foreground of well-known QSO z~6 (Keck/ESI QSO spectra) SDSS J1148+5251 QSO z=6.4189 Kakiichi+2018 (arXiv:1803.02981)

  7. Ly α emitting Lyman-break galaxies in J1148+5251 QSO field “Direct mapping of the physical state of the IGM around galaxies at z~6” Ly 𝛾 Ly ɑ Cosmological hydrodynamic simulation + simple radiative transfer Ionising UV radiation from galaxies → more Ly α transmission spikes around galaxies but the individual associations are “ stochastic "

  8. Ly α emitting Lyman-break galaxies in J1148+5251 QSO field “Direct mapping of the physical state of the IGM around galaxies at z~6” Ly 𝛾 Ly ɑ Cross-correlate… ?

  9. Ly α emitting Lyman-break galaxies in J1148+5251 QSO field “Direct mapping of the physical state of the IGM around galaxies at z~6” galaxy - Lya forest pixel r Lya transmitted flux Cross-correlate… ? exp(- 𝞄 ) r

  10. Ly α emitting Lyman-break galaxies in J1148+5251 QSO field “Direct mapping of the physical state of the IGM around galaxies at z~6” galaxy - Lya forest pixel r Lya transmitted flux Cross-correlate… ? exp(- 𝞄 ) r

  11. Ly α emitting Lyman-break galaxies in J1148+5251 QSO field “Direct mapping of the physical state of the IGM around galaxies at z~6” galaxy - Lya forest pixel r Lya transmitted flux Cross-correlate… ? exp(- 𝞄 ) r

  12. Ly α emitting Lyman-break galaxies in J1148+5251 QSO field “Direct mapping of the physical state of the IGM around galaxies at z~6” galaxy - Lya forest pixel r Lya transmitted flux Cross-correlate… ? exp(- 𝞄 ) r

  13. Ly α emitting Lyman-break galaxies in J1148+5251 QSO field “Direct mapping of the physical state of the IGM around galaxies at z~6” galaxy - Lya forest pixel r Lya transmitted flux Cross-correlate… ? exp(- 𝞄 ) r

  14. Ly α emitting Lyman-break galaxies in J1148+5251 QSO field “Direct mapping of the physical state of the IGM around galaxies at z~6” galaxy - Lya forest pixel r Lya transmitted flux Cross-correlate… well, just take exp(- 𝞄 ) the MEAN Lya transmitted flux around LBGs r

  15. Mean Ly α transmitted flux around LBGs at z~5.8 More Ly α forest transmission (=IGM more ionised) Closer to galaxies “ Tentative ”, but promising, evidence of “ Statistical HI proximity effect ” ?

  16. Mean Ly α transmitted flux around LBGs at z~5.8 10 � 11 10 � 11 h Γ HI ( r ) i h Γ HI ( r ) i 10 � 12 10 � 12 10 � 13 10 � 13 10 � 1 10 � 1 10 � 1 10 � 1 10 0 10 0 10 1 10 1 10 0 10 0 10 1 10 1 log 10 r [pMpc] log 10 r [pMpc] log 10 r [pMpc] log 10 r [pMpc] 10 � 1 10 � 1 h f esc i = 0 . 02 h f esc i = 0 . 02 M lim M lim UV = � 10 UV = � 10 h f esc i = 0 . 05 h f esc i = 0 . 05 M lim M lim UV = � 13 UV = � 13 h f esc i = 0 . 10 h f esc i = 0 . 10 M lim M lim UV = � 15 UV = � 15 h exp( � τ α ( r )) i h exp( � τ α ( r )) i h f esc i = 0 . 20 h f esc i = 0 . 20 M lim M lim UV = � 18 UV = � 18 10 � 2 10 � 2 10 � 3 10 � 3 0 0 1 1 2 2 3 3 4 4 5 5 6 6 0 0 1 1 2 2 3 3 4 4 5 5 6 6 r [pMpc] r [pMpc] r [pMpc] r [pMpc] Spectroscopic survey of Ly α emitting galaxies in QSO fields Galaxy spectra QSO QSO absorption spectra Ly α HII HI Post-reionized IGM

  17. Mean Ly α transmitted flux around LBGs at z~5.8 10 � 11 Ionising radiation from the ‘detected’ h Γ HI ( r ) i 10 � 12 galaxies is too small to explain the 10 � 13 observation (statistical HI proximity effect) 10 � 1 10 � 1 10 0 10 1 10 0 10 1 log 10 r [pMpc] log 10 r [pMpc] 10 � 1 h f esc i = 0 . 02 M lim UV = � 10 h f esc i = 0 . 05 M lim UV = � 13 h f esc i = 0 . 10 M lim UV = � 15 h exp( � τ α ( r )) i h f esc i = 0 . 20 M lim UV = � 18 10 � 2 10 � 3 0 1 2 3 4 5 6 0 1 2 3 4 5 6 r [pMpc] r [pMpc] Spectroscopic survey of Ly α emitting galaxies in QSO fields Galaxy spectra QSO QSO absorption spectra Ly α HII HI Post-reionized IGM

  18. Mean Ly α transmitted flux around LBGs at z~5.8 10 � 11 Ionising radiation from the ‘detected’ h Γ HI ( r ) i 10 � 12 galaxies is too small to explain the 10 � 13 observation (statistical HI proximity effect) 10 � 1 10 � 1 10 0 10 1 10 0 10 1 log 10 r [pMpc] log 10 r [pMpc] Need “ faint unseen galaxies clustering 10 � 1 h f esc i = 0 . 02 M lim UV = � 10 around the detected galaxies ” & h f esc i = 0 . 05 M lim UV = � 13 h f esc i = 0 . 10 M lim UV = � 15 h exp( � τ α ( r )) i their collective ionising radiation h f esc i = 0 . 20 M lim UV = � 18 (modelled by CLF/HOD framework and joint analysis of 10 � 2 luminosity function and angular galaxy clustering, then do RT) 10 � 3 0 1 2 3 4 5 6 0 1 2 3 4 5 6 r [pMpc] r [pMpc] Spectroscopic survey of Ly α emitting galaxies in QSO fields Galaxy spectra QSO QSO absorption spectra Ly α HII HI Post-reionized IGM

  19. Mean Ly α transmitted flux around LBGs at z~5.8 10 � 11 Ionising radiation from the ‘detected’ h Γ HI ( r ) i 10 � 12 galaxies is too small to explain the 10 � 13 observation (statistical HI proximity effect) 10 � 1 10 � 1 10 0 10 1 10 0 10 1 log 10 r [pMpc] log 10 r [pMpc] Need “ faint unseen galaxies clustering 10 � 1 h f esc i = 0 . 02 M lim UV = � 10 around the detected galaxies ” & h f esc i = 0 . 05 M lim UV = � 13 h f esc i = 0 . 10 M lim UV = � 15 h exp( � τ α ( r )) i their collective ionising radiation h f esc i = 0 . 20 M lim UV = � 18 (modelled by CLF/HOD framework and joint analysis of 10 � 2 luminosity function and angular galaxy clustering, then do RT) Slope is shallower if the IGM is ionised by even fainter galaxies 10 � 3 0 1 2 3 4 5 6 0 1 2 3 4 5 6 ‘ clustering bias of ionising sources ’ r [pMpc] r [pMpc] Spectroscopic survey of Ly α emitting galaxies in QSO fields Galaxy spectra QSO QSO absorption spectra Ly α HII HI Post-reionized IGM

  20. From the mean Ly α transmitted flux around LBGs to the average LyC escape fraction 10 � 11 h Γ HI ( r ) i 10 � 12 10 � 13 10 � 1 10 0 10 1 10 � 1 10 0 10 1 log 10 r [pMpc] log 10 r [pMpc] 10 � 1 h f esc i = 0 . 02 M lim UV = � 10 h f esc i = 0 . 05 M lim UV = � 13 h f esc i = 0 . 10 M lim UV = � 15 h exp( � τ α ( r )) i h f esc i = 0 . 20 M lim UV = � 18 10 � 2 10 � 3 0 1 2 3 4 5 6 0 1 2 3 4 5 6 r [pMpc] r [pMpc]

  21. From the mean Ly α transmitted flux around LBGs to the average LyC escape fraction 10 � 11 Luminosity function + LBG clustering h Γ HI ( r ) i 10 � 12 10 � 13 10 � 1 10 0 10 1 10 � 1 10 0 10 1 log 10 r [pMpc] log 10 r [pMpc] 10 � 1 h f esc i = 0 . 02 M lim UV = � 10 h f esc i = 0 . 05 M lim UV = � 13 h f esc i = 0 . 10 M lim UV = � 15 h exp( � τ α ( r )) i h f esc i = 0 . 20 M lim UV = � 18 10 � 2 10 � 3 0 1 2 3 4 5 6 0 1 2 3 4 5 6 r [pMpc] r [pMpc]

  22. From the mean Ly α transmitted flux around LBGs to the average LyC escape fraction 10 � 11 Luminosity function + LBG clustering h Γ HI ( r ) i 10 � 12 10 � 13 10 � 1 10 0 10 1 10 � 1 10 0 10 1 log 10 r [pMpc] log 10 r [pMpc] 10 � 1 h f esc i = 0 . 02 M lim UV = � 10 h f esc i = 0 . 05 M lim UV = � 13 h f esc i = 0 . 10 M lim UV = � 15 h exp( � τ α ( r )) i h f esc i = 0 . 20 M lim UV = � 18 10 � 2 lim M uv 10 � 3 0 1 2 3 4 5 6 0 1 2 3 4 5 6 r [pMpc] r [pMpc]

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend