on the escaping set of exponential maps
play

On the escaping set of exponential maps Patrick Comdhr - PowerPoint PPT Presentation

On the escaping set of exponential maps Patrick Comdhr Christian-Albrechts-Universitt zu Kiel Barcelona, 24 November 2015 P. Comdhr (CAU Kiel) Escaping set of exponential maps 24 November 2015 1 / 16 Outline Motivation 1 P. Comdhr


  1. On the escaping set of exponential maps Patrick Comdühr Christian-Albrechts-Universität zu Kiel Barcelona, 24 November 2015 P. Comdühr (CAU Kiel) Escaping set of exponential maps 24 November 2015 1 / 16

  2. Outline Motivation 1 P. Comdühr (CAU Kiel) Escaping set of exponential maps 24 November 2015 2 / 16

  3. Outline Motivation 1 Connectivity for real parameters 2 P. Comdühr (CAU Kiel) Escaping set of exponential maps 24 November 2015 2 / 16

  4. Outline Motivation 1 Connectivity for real parameters 2 The general case 3 P. Comdühr (CAU Kiel) Escaping set of exponential maps 24 November 2015 2 / 16

  5. Motivation Consider the family f a : C → C , f a ( z ) = e z + a , a ∈ C . P. Comdühr (CAU Kiel) Escaping set of exponential maps 24 November 2015 3 / 16

  6. Motivation Consider the family f a : C → C , f a ( z ) = e z + a , a ∈ C . Question: What can we say about the connectivity of its escaping sets I ( f a ) := { z ∈ C : f n a ( z ) → ∞ as n → ∞} ? P. Comdühr (CAU Kiel) Escaping set of exponential maps 24 November 2015 3 / 16

  7. Motivation Consider the family f a : C → C , f a ( z ) = e z + a , a ∈ C . Question: What can we say about the connectivity of its escaping sets I ( f a ) := { z ∈ C : f n a ( z ) → ∞ as n → ∞} ? 1.1 The case a = − 1 P. Comdühr (CAU Kiel) Escaping set of exponential maps 24 November 2015 3 / 16

  8. Motivation Consider the family f a : C → C , f a ( z ) = e z + a , a ∈ C . Question: What can we say about the connectivity of its escaping sets I ( f a ) := { z ∈ C : f n a ( z ) → ∞ as n → ∞} ? 1.1 The case a = − 1 1.2 The case a = − 0 . 99 + 0 . 0001 i P. Comdühr (CAU Kiel) Escaping set of exponential maps 24 November 2015 3 / 16

  9. Motivation Remark. P. Comdühr (CAU Kiel) Escaping set of exponential maps 24 November 2015 4 / 16

  10. Motivation Remark. For a ∈ ( − 1 , ∞ ) we have R ⊂ I ( f a ) . P. Comdühr (CAU Kiel) Escaping set of exponential maps 24 November 2015 4 / 16

  11. Motivation Remark. For a ∈ ( − 1 , ∞ ) we have R ⊂ I ( f a ) . (Because f a ( x ) ≥ x + ( 1 + a ) for all x ∈ R ) P. Comdühr (CAU Kiel) Escaping set of exponential maps 24 November 2015 4 / 16

  12. Motivation Remark. For a ∈ ( − 1 , ∞ ) we have R ⊂ I ( f a ) . (Because f a ( x ) ≥ x + ( 1 + a ) for all x ∈ R ) (Devaney, Krych 1984) J ( f a ) = C . P. Comdühr (CAU Kiel) Escaping set of exponential maps 24 November 2015 4 / 16

  13. Motivation Remark. For a ∈ ( − 1 , ∞ ) we have R ⊂ I ( f a ) . (Because f a ( x ) ≥ x + ( 1 + a ) for all x ∈ R ) (Devaney, Krych 1984) J ( f a ) = C . Let us look at the Eremenko-Lyubich class B := { f : C → C entire and transcendental : sing ( f − 1 ) is bounded } . a P. Comdühr (CAU Kiel) Escaping set of exponential maps 24 November 2015 4 / 16

  14. Motivation Remark. For a ∈ ( − 1 , ∞ ) we have R ⊂ I ( f a ) . (Because f a ( x ) ≥ x + ( 1 + a ) for all x ∈ R ) (Devaney, Krych 1984) J ( f a ) = C . Let us look at the Eremenko-Lyubich class B := { f : C → C entire and transcendental : sing ( f − 1 ) is bounded } . a For all a ∈ C we have f a ∈ B . P. Comdühr (CAU Kiel) Escaping set of exponential maps 24 November 2015 4 / 16

  15. Motivation Remark. For a ∈ ( − 1 , ∞ ) we have R ⊂ I ( f a ) . (Because f a ( x ) ≥ x + ( 1 + a ) for all x ∈ R ) (Devaney, Krych 1984) J ( f a ) = C . Let us look at the Eremenko-Lyubich class B := { f : C → C entire and transcendental : sing ( f − 1 ) is bounded } . a For all a ∈ C we have f a ∈ B . (Eremenko-Lyubich 1992) If f ∈ B , then I ( f ) ⊂ J ( f ) . P. Comdühr (CAU Kiel) Escaping set of exponential maps 24 November 2015 4 / 16

  16. Motivation Remark. For a ∈ ( − 1 , ∞ ) we have R ⊂ I ( f a ) . (Because f a ( x ) ≥ x + ( 1 + a ) for all x ∈ R ) (Devaney, Krych 1984) J ( f a ) = C . Let us look at the Eremenko-Lyubich class B := { f : C → C entire and transcendental : sing ( f − 1 ) is bounded } . a For all a ∈ C we have f a ∈ B . (Eremenko-Lyubich 1992) If f ∈ B , then I ( f ) ⊂ J ( f ) . In fact I ( f ) = J ( f ) , because J ( f ) = ∂ I ( f ) . P. Comdühr (CAU Kiel) Escaping set of exponential maps 24 November 2015 4 / 16

  17. Motivation Remark. For a ∈ ( − 1 , ∞ ) we have R ⊂ I ( f a ) . (Because f a ( x ) ≥ x + ( 1 + a ) for all x ∈ R ) (Devaney, Krych 1984) J ( f a ) = C . Let us look at the Eremenko-Lyubich class B := { f : C → C entire and transcendental : sing ( f − 1 ) is bounded } . a For all a ∈ C we have f a ∈ B . (Eremenko-Lyubich 1992) If f ∈ B , then I ( f ) ⊂ J ( f ) . In fact I ( f ) = J ( f ) , because J ( f ) = ∂ I ( f ) . If a ∈ C and a / ∈ J ( f a ) , then J ( f a ) and hence I ( f a ) is disconnected. P. Comdühr (CAU Kiel) Escaping set of exponential maps 24 November 2015 4 / 16

  18. Motivation Remark. For a ∈ ( − 1 , ∞ ) we have R ⊂ I ( f a ) . (Because f a ( x ) ≥ x + ( 1 + a ) for all x ∈ R ) (Devaney, Krych 1984) J ( f a ) = C . Let us look at the Eremenko-Lyubich class B := { f : C → C entire and transcendental : sing ( f − 1 ) is bounded } . a For all a ∈ C we have f a ∈ B . (Eremenko-Lyubich 1992) If f ∈ B , then I ( f ) ⊂ J ( f ) . In fact I ( f ) = J ( f ) , because J ( f ) = ∂ I ( f ) . If a ∈ C and a / ∈ J ( f a ) , then J ( f a ) and hence I ( f a ) is disconnected. In which way does the connectivity of I ( f a ) depend on the parameter a ? P. Comdühr (CAU Kiel) Escaping set of exponential maps 24 November 2015 4 / 16

  19. Motivation Remark. For a ∈ ( − 1 , ∞ ) we have R ⊂ I ( f a ) . (Because f a ( x ) ≥ x + ( 1 + a ) for all x ∈ R ) (Devaney, Krych 1984) J ( f a ) = C . Let us look at the Eremenko-Lyubich class B := { f : C → C entire and transcendental : sing ( f − 1 ) is bounded } . a For all a ∈ C we have f a ∈ B . (Eremenko-Lyubich 1992) If f ∈ B , then I ( f ) ⊂ J ( f ) . In fact I ( f ) = J ( f ) , because J ( f ) = ∂ I ( f ) . If a ∈ C and a / ∈ J ( f a ) , then J ( f a ) and hence I ( f a ) is disconnected. In which way does the connectivity of I ( f a ) depend on the parameter a ? Lasse Rempe-Gillen has given an answer to this question: P. Comdühr (CAU Kiel) Escaping set of exponential maps 24 November 2015 4 / 16

  20. Connectivity for real parameters Restriction to real parameters Theorem (Rempe-Gillen 2008) 1 Robert L. Devaney, Knaster-like continua and complex dynamics, Ergodic Theory Dynam. Systems 13 (1993), no. 4, 627–634. P. Comdühr (CAU Kiel) Escaping set of exponential maps 24 November 2015 5 / 16

  21. Connectivity for real parameters Restriction to real parameters Theorem (Rempe-Gillen 2008) For a ∈ ( − 1 , ∞ ) the set I ( f a ) is connected. 1 Robert L. Devaney, Knaster-like continua and complex dynamics, Ergodic Theory Dynam. Systems 13 (1993), no. 4, 627–634. P. Comdühr (CAU Kiel) Escaping set of exponential maps 24 November 2015 5 / 16

  22. Connectivity for real parameters Restriction to real parameters Theorem (Rempe-Gillen 2008) For a ∈ ( − 1 , ∞ ) the set I ( f a ) is connected. To prove the theorem, we construct a connected and dense subset of I ( f a ) . 1 Robert L. Devaney, Knaster-like continua and complex dynamics, Ergodic Theory Dynam. Systems 13 (1993), no. 4, 627–634. P. Comdühr (CAU Kiel) Escaping set of exponential maps 24 November 2015 5 / 16

  23. Connectivity for real parameters Restriction to real parameters Theorem (Rempe-Gillen 2008) For a ∈ ( − 1 , ∞ ) the set I ( f a ) is connected. To prove the theorem, we construct a connected and dense subset of I ( f a ) . The idea of this continuum is due to Devaney 1 : 1 Robert L. Devaney, Knaster-like continua and complex dynamics, Ergodic Theory Dynam. Systems 13 (1993), no. 4, 627–634. P. Comdühr (CAU Kiel) Escaping set of exponential maps 24 November 2015 5 / 16

  24. Connectivity for real parameters Restriction to real parameters Theorem (Rempe-Gillen 2008) For a ∈ ( − 1 , ∞ ) the set I ( f a ) is connected. To prove the theorem, we construct a connected and dense subset of I ( f a ) . The idea of this continuum is due to Devaney 1 : Denote S + := { z ∈ C : 0 < Im ( z ) < π } S − := { z ∈ C : − π < Im ( z ) < 0 } 1 Robert L. Devaney, Knaster-like continua and complex dynamics, Ergodic Theory Dynam. Systems 13 (1993), no. 4, 627–634. P. Comdühr (CAU Kiel) Escaping set of exponential maps 24 November 2015 5 / 16

  25. Connectivity for real parameters Restriction to real parameters Theorem (Rempe-Gillen 2008) For a ∈ ( − 1 , ∞ ) the set I ( f a ) is connected. To prove the theorem, we construct a connected and dense subset of I ( f a ) . The idea of this continuum is due to Devaney 1 : Denote S + := { z ∈ C : 0 < Im ( z ) < π } S − := { z ∈ C : − π < Im ( z ) < 0 } H + := { z ∈ C : Im ( z ) > 0 } H − := { z ∈ C : Im ( z ) < 0 } 1 Robert L. Devaney, Knaster-like continua and complex dynamics, Ergodic Theory Dynam. Systems 13 (1993), no. 4, 627–634. P. Comdühr (CAU Kiel) Escaping set of exponential maps 24 November 2015 5 / 16

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend