on the complexity of the asymmetric vpn problem
play

On the complexity of the asymmetric VPN problem Thomas Rothvo & - PowerPoint PPT Presentation

On the complexity of the asymmetric VPN problem Thomas Rothvo & Laura Sanit` a Institute of Mathematics EPFL, Lausanne ISMP09 Concave Cost VPN Given: Undirected graph G = ( V, E ), costs c : E Q + Outgoing traffic bound


  1. On the complexity of the asymmetric VPN problem Thomas Rothvoß & Laura Sanit` a Institute of Mathematics EPFL, Lausanne ISMP’09

  2. Concave Cost VPN Given: ◮ Undirected graph G = ( V, E ), costs c : E → Q + ◮ Outgoing traffic bound b + v ∈ N 0 , ingoing traffic bound b − v ∈ N 0 ◮ Concave non-decreasing function f : Q + → Q + Find: Paths P uv , capacities x e s.t. � c ( e ) · f ( x e ) → minimized e ∈ E and every valid traffic matrix ( D u,v ) u,v ∈ V can be routed. D is valid if v sends ≤ b + v and receives ≤ b − v

  3. Concave Cost VPN Given: ◮ Undirected graph G = ( V, E ), costs c : E → Q + ◮ Outgoing traffic bound b + v ∈ N 0 , ingoing traffic bound b − v ∈ N 0 ◮ Concave non-decreasing function f : Q + → Q + Find: Paths P uv , capacities x e s.t. � c ( e ) · f ( x e ) → minimized e ∈ E and every valid traffic matrix ( D u,v ) u,v ∈ V can be routed. D is valid if v sends ≤ b + v and receives ≤ b − v f ( x e ) x e

  4. Concave Cost VPN Given: ◮ Undirected graph G = ( V, E ), costs c : E → Q + ◮ Outgoing traffic bound b + v ∈ N 0 , ingoing traffic bound b − v ∈ N 0 ◮ Concave non-decreasing function f : Q + → Q + Find: Paths P uv , capacities x e s.t. � c ( e ) · f ( x e ) → minimized e ∈ E and every valid traffic matrix ( D u,v ) u,v ∈ V can be routed. D is valid if v sends ≤ b + v and receives ≤ b − v f ( x e ) W.l.o.g.: ◮ senders s ∈ S : b + s = 1 , b − s = 0 x e ◮ receivers r ∈ R : b + r = 0 , b − r = 1 ◮ non-terminals v : b + v = b − v = 0

  5. Example s 1 s 2 s 3 r 1 e r 3 r 4 r 2

  6. Example P s 1 r 2 s 1 s 2 s 3 r 1 e r 3 r 4 r 2

  7. Example P s 1 r 2 s 1 s 2 P s 1 r 1 s 3 r 1 e r 3 r 4 r 2

  8. Example P s 1 r 2 s 1 P s 2 r 3 s 2 P s 1 r 1 s 3 r 1 e r 3 r 4 r 2

  9. Example P s 1 r 2 s 1 P s 2 r 3 s 2 P s 1 r 1 s 3 r 1 e P s 3 r 3 r 3 r 4 r 2

  10. Example S R P s 1 r 2 s 1 r 1 s 1 P s 2 r 3 s 2 P s 1 r 1 s 2 r 2 s 3 r 1 e s 3 r 3 P s 3 r 3 r 3 r 4 r 4 r 2

  11. Example S R P s 1 r 2 s 1 r 1 s 1 P s 2 r 3 s 2 P s 1 r 1 s 2 r 2 s 3 r 1 e s 3 r 3 P s 3 r 3 r 3 r 4 r 4 r 2

  12. Example S R P s 1 r 2 s 1 r 1 s 1 P s 2 r 3 s 2 P s 1 r 1 s 2 r 2 s 3 r 1 e s 3 r 3 P s 3 r 3 r 3 r 4 r 4 r 2 x e = maximal cardinality of a matching in G e = ( S ∪ R, E e ) with ( s, r ) ∈ E e ⇔ e ∈ P sr

  13. Example S R P s 1 r 2 vertex cover C s 1 r 1 s 1 P s 2 r 3 s 2 P s 1 r 1 s 2 r 2 s 3 r 1 e s 3 r 3 P s 3 r 3 r 3 r 4 r 4 r 2 x e = maximal cardinality of a matching in G e = ( S ∪ R, E e ) with ( s, r ) ∈ E e ⇔ e ∈ P sr

  14. Known results Linear costs: ◮ APX -hard ◮ 5.55-apx [Gupta, Kumar, Roughgarden ’03] ◮ 4.74-apx [Eisenbrand, Grandoni ’05] ◮ 3.55-apx [Eisenbrand, Grandoni, Oriolo, Skutella ’07]

  15. Known results Linear costs: ◮ APX -hard ◮ 5.55-apx [Gupta, Kumar, Roughgarden ’03] ◮ 4.74-apx [Eisenbrand, Grandoni ’05] ◮ 3.55-apx [Eisenbrand, Grandoni, Oriolo, Skutella ’07] Linear costs/symmetric ( b + v = b − v ): ◮ Opt. solution is a tree [Goyal, Olver, Shepherd ’08] ◮ Opt. tree solution = best shortest path tree [Fingerhut et al. ’97; Gupta et al. ’01]

  16. Known results Linear costs: ◮ APX -hard ◮ 5.55-apx [Gupta, Kumar, Roughgarden ’03] ◮ 4.74-apx [Eisenbrand, Grandoni ’05] ◮ 3.55-apx [Eisenbrand, Grandoni, Oriolo, Skutella ’07] Linear costs/symmetric ( b + v = b − v ): ◮ Opt. solution is a tree [Goyal, Olver, Shepherd ’08] ◮ Opt. tree solution = best shortest path tree [Fingerhut et al. ’97; Gupta et al. ’01] Linear costs/balanced ( | R | = | S | ): ◮ Opt. tree solution = best shortest path tree [Italiano, Leonardi, Oriolo ’06]

  17. Known results Linear costs: ◮ APX -hard ◮ 5.55-apx [Gupta, Kumar, Roughgarden ’03] ◮ 4.74-apx [Eisenbrand, Grandoni ’05] ◮ 3.55-apx [Eisenbrand, Grandoni, Oriolo, Skutella ’07] Linear costs/symmetric ( b + v = b − v ): ◮ Opt. solution is a tree [Goyal, Olver, Shepherd ’08] ◮ Opt. tree solution = best shortest path tree [Fingerhut et al. ’97; Gupta et al. ’01] Linear costs/balanced ( | R | = | S | ): ◮ Opt. tree solution = best shortest path tree [Italiano, Leonardi, Oriolo ’06] Theorem There is a polytime 50 -approximation for Concave Cost VPN that also gives a tree solution.

  18. Single Sink Buy-at-Bulk f ( x e ) Given: ◮ G = ( V, E ), costs c : E → Q + x e ◮ clients D ⊆ V , root r ◮ Concave non-decreasing function f : Q + → Q + Find: Capacities x e s.t. � c ( e ) · f ( x e ) → minimize e ∈ E and each client can send a flow of 1 to r (simultaneously). client root r

  19. Single Sink Buy-at-Bulk f ( x e ) Given: ◮ G = ( V, E ), costs c : E → Q + x e ◮ clients D ⊆ V , root r ◮ Concave non-decreasing function f : Q + → Q + Find: Capacities x e s.t. � c ( e ) · f ( x e ) → minimize e ∈ E and each client can send a flow of 1 to r (simultaneously). 1 1 2 client 1 3 1 1 5 1 root r

  20. Single Sink Buy-at-Bulk f ( x e ) Given: ◮ G = ( V, E ), costs c : E → Q + x e ◮ clients D ⊆ V , root r ◮ Concave non-decreasing function f : Q + → Q + Find: Capacities x e s.t. � c ( e ) · f ( x e ) → minimize e ∈ E and each client can send a flow of 1 to r (simultaneously). Known results: ◮ APX -hard ◮ Opt. solution is tree [Karger, Minkoff ’00] ◮ For cable-based formulation: ◮ 76 . 8-apx [Gupta, Kumar, Roughgarden ’03] ◮ improved to 25-apx [Grandoni, Italiano ’06]

  21. The algorithm Algorithm: +1 − 1 − 1 +1 − 1 +1 − 1

  22. The algorithm Algorithm: 1. Choose a sender s ∗ ∈ S uniformly at random +1 − 1 − 1 s ∗ +1 − 1 +1 − 1

  23. The algorithm Algorithm: 1. Choose a sender s ∗ ∈ S uniformly at random 2. Define central hub instance with single sender s ∗ (but b + s ∗ = | S | ), receivers S ∪ R − 1 − 1 − 1 s ∗ − 1 + | S | − 1 − 1

  24. The algorithm Algorithm: 1. Choose a sender s ∗ ∈ S uniformly at random 2. Define central hub instance with single sender s ∗ (but b + s ∗ = | S | ), receivers S ∪ R 3. Compute 25-apx solution x ′ e using a SSBB algo for the central hub VPN instance − 1 − 1 − 1 s ∗ − 1 + | S | − 1 − 1

  25. The algorithm Algorithm: 1. Choose a sender s ∗ ∈ S uniformly at random 2. Define central hub instance with single sender s ∗ (but b + s ∗ = | S | ), receivers S ∪ R 3. Compute 25-apx solution x ′ e using a SSBB algo for the central hub VPN instance − 1 − 1 − 1 s ∗ − 1 + | S | − 1 − 1 Claim: Capacities x ′ e suffice for orig. instance

  26. The algorithm Algorithm: 1. Choose a sender s ∗ ∈ S uniformly at random 2. Define central hub instance with single sender s ∗ (but b + s ∗ = | S | ), receivers S ∪ R 3. Compute 25-apx solution x ′ e using a SSBB algo for the central hub VPN instance x ′ e = min { k, | S |} − 1 − 1 − 1 s ∗ e − 1 + | S | k terminals − 1 − 1 Claim: Capacities x ′ e suffice for orig. instance

  27. SSBB vs. VPN with central hub VPN: ◮ sender s ∗ ( b + s ∗ = | S | ), receivers S ∪ R ◮ cost function � e ∈ E c e · f ( x e ) SSBB: ◮ root s ∗ , clients S ∪ R ◮ cost function � e ∈ E c e · f (min { x e , | S |} ) − 1 − 1 − 1 s ∗ − 1 + | S | − 1 − 1

  28. SSBB vs. VPN with central hub VPN: f ( x e ) ◮ sender s ∗ ( b + s ∗ = | S | ), receivers S ∪ R ◮ cost function � e ∈ E c e · f ( x e ) x e SSBB: | S | ◮ root s ∗ , clients S ∪ R ◮ cost function � e ∈ E c e · f (min { x e , | S |} ) → concave − 1 − 1 − 1 s ∗ − 1 + | S | − 1 − 1

  29. SSBB vs. VPN with central hub VPN: ◮ sender s ∗ ( b + s ∗ = | S | ), receivers S ∪ R ◮ cost function � e ∈ E c e · f ( x e ) SSBB: ◮ root s ∗ , clients S ∪ R ◮ cost function � e ∈ E c e · f (min { x e , | S |} ) → concave − 1 − 1 − 1 e s ∗ − 1 + | S | − 1 − 1

  30. SSBB vs. VPN with central hub VPN: ◮ sender s ∗ ( b + s ∗ = | S | ), receivers S ∪ R ◮ cost function � e ∈ E c e · f ( x e ) SSBB: ◮ root s ∗ , clients S ∪ R ◮ cost function � e ∈ E c e · f (min { x e , | S |} ) → concave − 1 − 1 − 1 k receivers/clients e s ∗ − 1 + | S | − 1 − 1 capacity on e cost for e VPN SSBB

  31. SSBB vs. VPN with central hub VPN: ◮ sender s ∗ ( b + s ∗ = | S | ), receivers S ∪ R ◮ cost function � e ∈ E c e · f ( x e ) SSBB: ◮ root s ∗ , clients S ∪ R ◮ cost function � e ∈ E c e · f (min { x e , | S |} ) → concave − 1 − 1 − 1 k receivers/clients e s ∗ − 1 + | S | − 1 − 1 capacity on e cost for e VPN min { k, | S |} c ( e ) · f (min { k, | S |} ) SSBB

  32. SSBB vs. VPN with central hub VPN: ◮ sender s ∗ ( b + s ∗ = | S | ), receivers S ∪ R ◮ cost function � e ∈ E c e · f ( x e ) SSBB: ◮ root s ∗ , clients S ∪ R ◮ cost function � e ∈ E c e · f (min { x e , | S |} ) → concave − 1 − 1 − 1 k receivers/clients e s ∗ − 1 + | S | − 1 − 1 capacity on e cost for e VPN min { k, | S |} c ( e ) · f (min { k, | S |} ) SSBB k c ( e ) · f (min { k, | S |} )

  33. Analysis Theorem There is a central hub solution of expected cost ≤ 2 · OPT . s ∗

  34. Analysis Theorem There is a central hub solution of expected cost ≤ 2 · OPT . Proof: ◮ Let ( x e , P sr ) be optimal solution for orig. instance s ∗

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend