on smooth spline spaces and quasi interpolants over
play

On smooth spline spaces and quasi-interpolants over Powell-Sabin - PowerPoint PPT Presentation

Intro PS r -splines Quasi-interpolation Conclusions On smooth spline spaces and quasi-interpolants over Powell-Sabin triangulations Hendrik Speleers Katholieke Universiteit Leuven Department of Computer Science MAIA Conference Erice,


  1. Intro PS r -splines Quasi-interpolation Conclusions On smooth spline spaces and quasi-interpolants over Powell-Sabin triangulations Hendrik Speleers Katholieke Universiteit Leuven Department of Computer Science MAIA Conference Erice, September 25–30, 2013 H. Speleers On smooth spline spaces and QIs over PS-triangulations

  2. Intro PS r -splines Quasi-interpolation Conclusions Outline Introduction Smooth Powell-Sabin B-splines Spline space Normalized basis Quasi-interpolation Conclusions H. Speleers On smooth spline spaces and QIs over PS-triangulations

  3. Intro PS r -splines Quasi-interpolation Conclusions Introduction Triangulation with Powell-Sabin split [Powell & Sabin, TOMS 1977] ◮ Every triangle is split into six subtriangles ◮ E.g., incenter as split point ⇒ H. Speleers On smooth spline spaces and QIs over PS-triangulations

  4. Intro PS r -splines Quasi-interpolation Conclusions Introduction Univariate B-spline representation ◮ Basis: local support, convex partition of unity ◮ Control points (CAGD) ◮ Easy manipulation: stable evaluation [e.g. de Boor], differentiation, integration ◮ ... Bivariate B-spline representation ◮ Smooth splines on Powell-Sabin triangulations ◮ Basis with similar properties as univariate case ◮ Construction of quasi-interpolations (using blossoming) H. Speleers On smooth spline spaces and QIs over PS-triangulations

  5. Intro PS r -splines Quasi-interpolation Conclusions Introduction Univariate B-spline representation ◮ Basis: local support, convex partition of unity ◮ Control points (CAGD) ◮ Easy manipulation: stable evaluation [e.g. de Boor], differentiation, integration ◮ ... Bivariate B-spline representation ◮ Smooth splines on Powell-Sabin triangulations ◮ Basis with similar properties as univariate case ◮ Construction of quasi-interpolations (using blossoming) H. Speleers On smooth spline spaces and QIs over PS-triangulations

  6. Intro PS r -splines Quasi-interpolation Conclusions Spline space Basis Smooth Powell-Sabin (PS r ) splines PS r -spline space We consider piecewise polynomials of degree d with global C r -continuity and C ρ -supersmoothness at some points and edges, defined on a triangulation ∆ with PS-split ∆ ∗ d (∆ ∗ ) = { s ∈ C r (Ω) : s | T ∗ ∈ P d , T ∗ ∈ ∆ ∗ ; S r ,ρ s ∈ C ρ ( W ) , W ∈ ( V ∪ Z ∗ ); s ∈ C ρ ( e ) , e ∈ E ∗ } C ρ C ρ C ρ C ρ C ρ C ρ C ρ H. Speleers On smooth spline spaces and QIs over PS-triangulations

  7. Intro PS r -splines Quasi-interpolation Conclusions Spline space Basis Smooth Powell-Sabin (PS r ) splines PS r -spline space We consider piecewise polynomials of degree d with global C r -continuity and C ρ -supersmoothness at some points and edges, defined on a triangulation ∆ with PS-split ∆ ∗ d (∆ ∗ ) = { s ∈ C r (Ω) : s | T ∗ ∈ P d , T ∗ ∈ ∆ ∗ ; S r ,ρ s ∈ C ρ ( W ) , W ∈ ( V ∪ Z ∗ ); s ∈ C ρ ( e ) , e ∈ E ∗ } C ρ PS r -splines: for a given r , d = 3 r − 1, ρ = 2 r − 1 C ρ C ρ C ρ r = 1: [Powell & Sabin, 1977, . . . ] C ρ r = 2: [Sablonni` C ρ ere, 1987, . . . ] C ρ r > 2: [S., 2013] H. Speleers On smooth spline spaces and QIs over PS-triangulations

  8. Intro PS r -splines Quasi-interpolation Conclusions Spline space Basis Smooth Powell-Sabin (PS r ) splines PS r -spline space � 2 r +1 � � r � ◮ Let n v vertices and n t triangles in ∆; let N v = , N t = 2 2 ◮ Dimension equals N v n v + N t n t ◮ Interpolation problem: PS r -spline s is uniquely defined by D a x D b y s ( V l ) = f x a y b , l , l = 1 , . . . , n v , 0 ≤ a + b ≤ 2 r − 1 , D a x D b y s ( Z m ) = g x a y b , m , m = 1 , . . . , n t , 0 ≤ a + b ≤ r − 2 , for any given set of f x a y b , l -values and g x a y b , m -values. ◮ Basis? ◮ N t functions B t k , j ( x , y ) related to each triangle T k ◮ N v functions B v i , j ( x , y ) related to each vertex V i H. Speleers On smooth spline spaces and QIs over PS-triangulations

  9. Intro PS r -splines Quasi-interpolation Conclusions Spline space Basis Smooth Powell-Sabin (PS r ) splines PS r -spline space � 2 r +1 � � r � ◮ Let n v vertices and n t triangles in ∆; let N v = , N t = 2 2 ◮ Dimension equals N v n v + N t n t ◮ Interpolation problem: PS r -spline s is uniquely defined by D a x D b y s ( V l ) = f x a y b , l , l = 1 , . . . , n v , 0 ≤ a + b ≤ 2 r − 1 , D a x D b y s ( Z m ) = g x a y b , m , m = 1 , . . . , n t , 0 ≤ a + b ≤ r − 2 , for any given set of f x a y b , l -values and g x a y b , m -values. ◮ Basis? ◮ N t functions B t k , j ( x , y ) related to each triangle T k ◮ N v functions B v i , j ( x , y ) related to each vertex V i H. Speleers On smooth spline spaces and QIs over PS-triangulations

  10. Intro PS r -splines Quasi-interpolation Conclusions Spline space Basis Smooth Powell-Sabin (PS r ) splines PS r -spline space � 2 r +1 � � r � ◮ Let n v vertices and n t triangles in ∆; let N v = , N t = 2 2 ◮ Dimension equals N v n v + N t n t ◮ Interpolation problem: PS r -spline s is uniquely defined by D a x D b y s ( V l ) = f x a y b , l , l = 1 , . . . , n v , 0 ≤ a + b ≤ 2 r − 1 , D a x D b y s ( Z m ) = g x a y b , m , m = 1 , . . . , n t , 0 ≤ a + b ≤ r − 2 , for any given set of f x a y b , l -values and g x a y b , m -values. ◮ Basis? ◮ N t functions B t k , j ( x , y ) related to each triangle T k ◮ N v functions B v i , j ( x , y ) related to each vertex V i H. Speleers On smooth spline spaces and QIs over PS-triangulations

  11. Intro PS r -splines Quasi-interpolation Conclusions Spline space Basis Smooth Powell-Sabin (PS r ) splines PS r -spline space � 2 r +1 � � r � ◮ Let n v vertices and n t triangles in ∆; let N v = , N t = 2 2 ◮ Dimension equals N v n v + N t n t ◮ Interpolation problem: PS r -spline s is uniquely defined by D a x D b y s ( V l ) = f x a y b , l , l = 1 , . . . , n v , 0 ≤ a + b ≤ 2 r − 1 , D a x D b y s ( Z m ) = g x a y b , m , m = 1 , . . . , n t , 0 ≤ a + b ≤ r − 2 , for any given set of f x a y b , l -values and g x a y b , m -values. ◮ Basis? ◮ B-spline-like basis [S., 2010, 2013] ◮ local support + nonnegativity + partition of unity H. Speleers On smooth spline spaces and QIs over PS-triangulations

  12. Intro PS r -splines Quasi-interpolation Conclusions Spline space Basis Normalized basis B-spline related to a triangle T k ◮ The B-spline B t k , j ( x , y ) is the solution of the interpolation problem g x a y b , k = β ab k , j � = 0; g x a y b , m = 0 , m � = k ; f x a y b , l = 0 (local support) ◮ The values of β ab k , j are determined via Bernstein-B´ ezier representation of B-spline (nonnegativity) H. Speleers On smooth spline spaces and QIs over PS-triangulations

  13. Intro PS r -splines Quasi-interpolation Conclusions Spline space Basis Normalized basis B-spline related to a triangle T k Example r = 2 , d = 5: • = zero BB-coefficient • = non-zero BB-coefficient polynomial of degree 2 r − 1 with single BB-coeff b 111 = 1 and other BB-coeffs b κµν = 0 H. Speleers On smooth spline spaces and QIs over PS-triangulations

  14. Intro PS r -splines Quasi-interpolation Conclusions Spline space Basis Normalized basis B-spline related to a triangle T k Example r = 2 , d = 5: • = zero BB-coefficient • = non-zero BB-coefficient polynomial of degree 2 r − 1 with single BB-coeff b 111 = 1 and other BB-coeffs b κµν = 0 H. Speleers On smooth spline spaces and QIs over PS-triangulations

  15. Intro PS r -splines Quasi-interpolation Conclusions Spline space Basis Normalized basis B-spline related a vertex V i ◮ Let M i be the molecule of vertex V i . The B-spline B v i , j ( x , y ) is the solution of the interpolation problem f x a y b , i = α ab i , j ; f x a y b , l = 0 , l � = i g x a y b , m = β ab i , j , T m ∈ M i ; g x a y b , m = 0 , T m / ∈ M i (Local support) � � ◮ Given α ab , the values of β ab i , j , 0 ≤ a + b ≤ 2 r − 1 i , j are determined via Bernstein-B´ ezier representation of B-spline H. Speleers On smooth spline spaces and QIs over PS-triangulations

  16. Intro PS r -splines Quasi-interpolation Conclusions Spline space Basis Normalized basis B-spline related a vertex V i Example r = 2 , d = 5: • = zero BB-coefficient • = non-zero BB-coefficient polynomial of degree 2 r − 1 given by α ab i , j H. Speleers On smooth spline spaces and QIs over PS-triangulations

  17. Intro PS r -splines Quasi-interpolation Conclusions Spline space Basis Normalized basis B-spline related a vertex V i Example r = 2 , d = 5: • = zero BB-coefficient • = non-zero BB-coefficient polynomial of degree 2 r − 1 given by α ab i , j H. Speleers On smooth spline spaces and QIs over PS-triangulations

  18. Intro PS r -splines Quasi-interpolation Conclusions Spline space Basis Normalized basis B-spline related a vertex V i Example r = 2 , d = 5: • = zero BB-coefficient • = non-zero BB-coefficient polynomial of degree 2 r − 1 given by α ab i , j H. Speleers On smooth spline spaces and QIs over PS-triangulations

  19. Intro PS r -splines Quasi-interpolation Conclusions Spline space Basis Normalized basis B-spline related a vertex V i ◮ For each V i , choose a PS-triangle t i ◮ Choose � 3 r − 1 � � ( θ i ) a + b D a a + b α ab x D b y B 2 r − 1 i , j = � 2 r − 1 κµν ( V i ) , a + b with B 2 r − 1 κµν ( x , y ) a Bernstein polynomial defined on t i , for some κ + µ + ν = 2 r − 1 (partition of unity) H. Speleers On smooth spline spaces and QIs over PS-triangulations

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend