on second order optimality conditions for conic
play

On Second-Order Optimality Conditions for Conic Programming Hctor - PowerPoint PPT Presentation

On Second-Order Optimality Conditions for Conic Programming Hctor Ramrez C. 1 1 Departamento Ingeniera Matemtica & Centro Modelamiento Matemtico, Universidad de Chile, Santiago de Chile 6mes Journes Franco-Chiliennes


  1. On Second-Order Optimality Conditions for Conic Programming Héctor Ramírez C. 1 1 Departamento Ingeniería Matemática & Centro Modelamiento Matemático, Universidad de Chile, Santiago de Chile 6èmes Journées Franco-Chiliennes d’Optimisation May 19th, 2008 Université du Sud Toulon-Var Héctor Ramírez C. (DIM & CMM, U. Chile) SOOC for Conic Programming Toulon 2008 1 / 24

  2. Outline Introduction and Motivation 1 Formulation of Our Problem Applications of SDP and SOCP Optimality Conditions Constraint Qualification Conditions Reduction Approach Main results 2 Duality Results for Conic Programming Strong Regularity Condition Héctor Ramírez C. (DIM & CMM, U. Chile) SOOC for Conic Programming Toulon 2008 2 / 24

  3. Outline Introduction and Motivation 1 Formulation of Our Problem Applications of SDP and SOCP Optimality Conditions Constraint Qualification Conditions Reduction Approach Main results 2 Duality Results for Conic Programming Strong Regularity Condition Héctor Ramírez C. (DIM & CMM, U. Chile) SOOC for Conic Programming Toulon 2008 3 / 24

  4. Conic Programming Consider the optimization problem over a closed convex cone K x ∈ X f ( x ) ; g ( x ) ∈ K ⊆ Y min (P) where X and Y are finite dimensional Hilbert spaces. For instance: − ⊂ R p × R m , K = { 0 } × R m (NLP) K = S m (SDP) − or K = Q m 1 + 1 × Q m 2 + 1 × ... × Q m J + 1 , (SOCP) y ⊤ ) ∈ R × R m j : y 0 ≥ � ¯ where Q m j + 1 = { y = ( y 0 , ¯ y �} Héctor Ramírez C. (DIM & CMM, U. Chile) SOOC for Conic Programming Toulon 2008 4 / 24

  5. Conic Programming Consider the optimization problem over a closed convex cone K x ∈ X f ( x ) ; g ( x ) ∈ K ⊆ Y min (P) where X and Y are finite dimensional Hilbert spaces. For instance: − ⊂ R p × R m , K = { 0 } × R m (NLP) K = S m (SDP) − or K = Q m 1 + 1 × Q m 2 + 1 × ... × Q m J + 1 , (SOCP) y ⊤ ) ∈ R × R m j : y 0 ≥ � ¯ where Q m j + 1 = { y = ( y 0 , ¯ y �} Héctor Ramírez C. (DIM & CMM, U. Chile) SOOC for Conic Programming Toulon 2008 4 / 24

  6. Conic Programming Consider the optimization problem over a closed convex cone K x ∈ X f ( x ) ; g ( x ) ∈ K ⊆ Y min (P) where X and Y are finite dimensional Hilbert spaces. For instance: − ⊂ R p × R m , K = { 0 } × R m (NLP) K = S m (SDP) − or K = Q m 1 + 1 × Q m 2 + 1 × ... × Q m J + 1 , (SOCP) y ⊤ ) ∈ R × R m j : y 0 ≥ � ¯ where Q m j + 1 = { y = ( y 0 , ¯ y �} Héctor Ramírez C. (DIM & CMM, U. Chile) SOOC for Conic Programming Toulon 2008 4 / 24

  7. Conic Programming Consider the optimization problem over a closed convex cone K x ∈ X f ( x ) ; g ( x ) ∈ K ⊆ Y min (P) where X and Y are finite dimensional Hilbert spaces. For instance: − ⊂ R p × R m , K = { 0 } × R m (NLP) K = S m (SDP) − or K = Q m 1 + 1 × Q m 2 + 1 × ... × Q m J + 1 , (SOCP) y ⊤ ) ∈ R × R m j : y 0 ≥ � ¯ where Q m j + 1 = { y = ( y 0 , ¯ y �} Héctor Ramírez C. (DIM & CMM, U. Chile) SOOC for Conic Programming Toulon 2008 4 / 24

  8. Applications Minimization of Maximum Eigenvalue of G ( x ) t ∈ R , x ∈ R n t ; G ( x ) − tI � 0 min Robust Linear Programming x ∈ R n { f ( x ) = c ⊤ x ; a ⊤ min i x ≤ b i ∀ a i ∈ E i , i = 1 , ..., m } (RLP) where P i = P ⊤ � 0, and E i := { ¯ a i + P i u : � u � ≤ 1 } i The robust linear constraint can be reformulated as follows max { a ⊤ a ⊤ i x : a i ∈ E i } = ¯ i x + � P i x � ≤ b i , � b i − ¯ a ⊤ � i x which is of the form: ∈ Q n + 1 P i x Then (RLP) can be casted as a (SOCP) problem Héctor Ramírez C. (DIM & CMM, U. Chile) SOOC for Conic Programming Toulon 2008 5 / 24

  9. Applications Minimization of Maximum Eigenvalue of G ( x ) t ∈ R , x ∈ R n t ; G ( x ) − tI � 0 min Robust Linear Programming x ∈ R n { f ( x ) = c ⊤ x ; a ⊤ min i x ≤ b i ∀ a i ∈ E i , i = 1 , ..., m } (RLP) where P i = P ⊤ � 0, and E i := { ¯ a i + P i u : � u � ≤ 1 } i The robust linear constraint can be reformulated as follows max { a ⊤ a ⊤ i x : a i ∈ E i } = ¯ i x + � P i x � ≤ b i , � b i − ¯ a ⊤ � i x which is of the form: ∈ Q n + 1 P i x Then (RLP) can be casted as a (SOCP) problem Héctor Ramírez C. (DIM & CMM, U. Chile) SOOC for Conic Programming Toulon 2008 5 / 24

  10. Applications Minimization of Maximum Eigenvalue of G ( x ) t ∈ R , x ∈ R n t ; G ( x ) − tI � 0 min Robust Linear Programming x ∈ R n { f ( x ) = c ⊤ x ; a ⊤ min i x ≤ b i ∀ a i ∈ E i , i = 1 , ..., m } (RLP) where P i = P ⊤ � 0, and E i := { ¯ a i + P i u : � u � ≤ 1 } i The robust linear constraint can be reformulated as follows max { a ⊤ a ⊤ i x : a i ∈ E i } = ¯ i x + � P i x � ≤ b i , � b i − ¯ a ⊤ � i x which is of the form: ∈ Q n + 1 P i x Then (RLP) can be casted as a (SOCP) problem Héctor Ramírez C. (DIM & CMM, U. Chile) SOOC for Conic Programming Toulon 2008 5 / 24

  11. Applications Minimization of Maximum Eigenvalue of G ( x ) t ∈ R , x ∈ R n t ; G ( x ) − tI � 0 min Robust Linear Programming x ∈ R n { f ( x ) = c ⊤ x ; a ⊤ min i x ≤ b i ∀ a i ∈ E i , i = 1 , ..., m } (RLP) where P i = P ⊤ � 0, and E i := { ¯ a i + P i u : � u � ≤ 1 } i The robust linear constraint can be reformulated as follows max { a ⊤ a ⊤ i x : a i ∈ E i } = ¯ i x + � P i x � ≤ b i , � b i − ¯ a ⊤ � i x which is of the form: ∈ Q n + 1 P i x Then (RLP) can be casted as a (SOCP) problem Héctor Ramírez C. (DIM & CMM, U. Chile) SOOC for Conic Programming Toulon 2008 5 / 24

  12. Applications Minimization of Maximum Eigenvalue of G ( x ) t ∈ R , x ∈ R n t ; G ( x ) − tI � 0 min Robust Linear Programming x ∈ R n { f ( x ) = c ⊤ x ; a ⊤ min i x ≤ b i ∀ a i ∈ E i , i = 1 , ..., m } (RLP) where P i = P ⊤ � 0, and E i := { ¯ a i + P i u : � u � ≤ 1 } i The robust linear constraint can be reformulated as follows max { a ⊤ a ⊤ i x : a i ∈ E i } = ¯ i x + � P i x � ≤ b i , � b i − ¯ a ⊤ � i x which is of the form: ∈ Q n + 1 P i x Then (RLP) can be casted as a (SOCP) problem Héctor Ramírez C. (DIM & CMM, U. Chile) SOOC for Conic Programming Toulon 2008 5 / 24

  13. First Order Optimality Conditions Consider the optimization problem over a closed convex cone K min f ( x ) ; g ( x ) ∈ K (P) x Karush-Kuhn-Tucker Conditions We say that ( x ∗ , y ∗ ) is a KKT-point ( y ∗ ∈ Λ( x ∗ ) ) if it satisfies ∇ x L ( x ∗ , y ∗ ) = ∇ f ( x ∗ ) + Dg ( x ∗ ) ⊤ y ∗ = 0 , (KKT) y ∗ ∈ N K ( g ( x ∗ )) , where N K ( z ) is the normal cone to K at z ∈ K Héctor Ramírez C. (DIM & CMM, U. Chile) SOOC for Conic Programming Toulon 2008 6 / 24

  14. First Order Optimality Conditions Consider the optimization problem over a closed convex cone K min f ( x ) ; g ( x ) ∈ K (P) x Karush-Kuhn-Tucker Conditions We say that ( x ∗ , y ∗ ) is a KKT-point ( y ∗ ∈ Λ( x ∗ ) ) if it satisfies ∇ x L ( x ∗ , y ∗ ) = ∇ f ( x ∗ ) + Dg ( x ∗ ) ⊤ y ∗ = 0 , � g ( x ∗ ) , y ∗ � = 0 , (KKT) g ( x ∗ ) ∈ K , y ∗ ∈ K − (= − K ) , where K − is the negative polar cone of K Héctor Ramírez C. (DIM & CMM, U. Chile) SOOC for Conic Programming Toulon 2008 6 / 24

  15. Constraint Qualification Conditions Robinson’s Constraint Qualification Condition Let x ∗ be a feasible point of (P). Definition We say that x ∗ satisfies Robinson’s const. qualif. cond. if Dg ( x ∗ ) X + T K ( g ( x ∗ )) = Y (Rob) where T K ( g ( x ∗ )) is the tangent (or Bouligand) cone of K at g ( x ∗ ) NLP case: Mangasarian-Fromovitz condition: ∇ g i ( x ∗ ) , for all i ∈ { 1 , ..., p } , are l.i. and ∃ h ∈ R n such that: ∇ g i ( x ∗ ) ⊤ h = 0 , ∀ i ∈ { 1 , ..., p } , ∇ g i ( x ∗ ) ⊤ h < 0 , ∀ i ∈ { p + 1 , ..., p + m } s.t. g i ( x ∗ ) = 0 ∃ h ∈ R n such that E ⊤ Dg ( x ∗ ) hE ≺ 0 , SDP case: where the columns of E are an orthonormal basis of Ker g ( x ∗ ) Héctor Ramírez C. (DIM & CMM, U. Chile) SOOC for Conic Programming Toulon 2008 7 / 24

  16. Constraint Qualification Conditions Robinson’s Constraint Qualification Condition Let x ∗ be a feasible point of (P). Definition We say that x ∗ satisfies Robinson’s const. qualif. cond. if 0 ∈ int { g ( x ∗ ) + Dg ( x ∗ ) X − K } (Rob) NLP case: Mangasarian-Fromovitz condition: ∇ g i ( x ∗ ) , for all i ∈ { 1 , ..., p } , are l.i. and ∃ h ∈ R n such that: ∇ g i ( x ∗ ) ⊤ h = 0 , ∀ i ∈ { 1 , ..., p } , ∇ g i ( x ∗ ) ⊤ h < 0 , ∀ i ∈ { p + 1 , ..., p + m } s.t. g i ( x ∗ ) = 0 ∃ h ∈ R n such that E ⊤ Dg ( x ∗ ) hE ≺ 0 , SDP case: where the columns of E are an orthonormal basis of Ker g ( x ∗ ) Héctor Ramírez C. (DIM & CMM, U. Chile) SOOC for Conic Programming Toulon 2008 7 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend