on reflexible polynomials
play

On Reflexible Polynomials Aleksander Malni c University of - PowerPoint PPT Presentation

On Reflexible Polynomials Aleksander Malni c University of Ljubljana and University of Primorska Joint work with Bo stjan Kuzman and Primo z Poto cnik Graphs, groups, and more: celebrating Brian Alspachs 80th and Dragan Maru


  1. On Reflexible Polynomials Aleksander Malniˇ c University of Ljubljana and University of Primorska Joint work with Boˇ stjan Kuzman and Primoˇ z Potoˇ cnik Graphs, groups, and more: celebrating Brian Alspach’s 80th and Dragan Maruˇ sˇ c’s 65th birthdays Koper, Slovenia May 28 – June 1, 2018 1 / 11

  2. Reflexible polynomials 2 / 11

  3. Reflexible polynomials f ( x ) = a 0 + a 1 x + . . . + a k x k ∈ F [ x ] is reflexible if ∃ λ ∈ F ∗ ∀ i : type (1) λ a k − i = a i (1) ∃ λ ∈ F ∗ ∀ i : ( − 1) i a i type (2) λ a k − i = (2) 2 / 11

  4. Reflexible polynomials f ( x ) = a 0 + a 1 x + . . . + a k x k ∈ F [ x ] is reflexible if ∃ λ ∈ F ∗ ∀ i : type (1) λ a k − i = a i (1) ∃ λ ∈ F ∗ ∀ i : ( − 1) i a i type (2) λ a k − i = (2) type (1) ⇒ λ = ± 1 2 / 11

  5. Reflexible polynomials f ( x ) = a 0 + a 1 x + . . . + a k x k ∈ F [ x ] is reflexible if ∃ λ ∈ F ∗ ∀ i : type (1) λ a k − i = a i (1) ∃ λ ∈ F ∗ ∀ i : ( − 1) i a i type (2) λ a k − i = (2) type (1) ⇒ λ = ± 1 4 + 2 x + 3 x 2 + x 3 ∈ Z 5 [ x ] λ = − 1, type (1) 2 / 11

  6. Reflexible polynomials f ( x ) = a 0 + a 1 x + . . . + a k x k ∈ F [ x ] is reflexible if ∃ λ ∈ F ∗ ∀ i : type (1) λ a k − i = a i (1) ∃ λ ∈ F ∗ ∀ i : ( − 1) i a i type (2) λ a k − i = (2) type (1) ⇒ λ = ± 1 4 + 2 x + 3 x 2 + x 3 ∈ Z 5 [ x ] λ = − 1, type (1) λ = 1 self-reciprocal, palindromic, Gorenstein polynomials 2 / 11

  7. Reflexible polynomials f ( x ) = a 0 + a 1 x + . . . + a k x k ∈ F [ x ] is reflexible if ∃ λ ∈ F ∗ ∀ i : type (1) λ a k − i = a i (1) ∃ λ ∈ F ∗ ∀ i : ( − 1) i a i type (2) λ a k − i = (2) type (1) ⇒ λ = ± 1 4 + 2 x + 3 x 2 + x 3 ∈ Z 5 [ x ] λ = − 1, type (1) λ = 1 self-reciprocal, palindromic, Gorenstein polynomials 2 / 11

  8. Reflexible polynomials f ( x ) = a 0 + a 1 x + . . . + a k x k ∈ F [ x ] is reflexible if ∃ λ ∈ F ∗ ∀ i : type (1) λ a k − i = a i (1) ∃ λ ∈ F ∗ ∀ i : ( − 1) i a i type (2) λ a k − i = (2) type (1) ⇒ λ = ± 1 4 + 2 x + 3 x 2 + x 3 ∈ Z 5 [ x ] λ = − 1, type (1) λ = 1 self-reciprocal, palindromic, Gorenstein polynomials over Z p : criptography, sequences, subfields in alg. closures 2 / 11

  9. Reflexible polynomials f ( x ) = a 0 + a 1 x + . . . + a k x k ∈ F [ x ] is reflexible if ∃ λ ∈ F ∗ ∀ i : type (1) λ a k − i = a i (1) ∃ λ ∈ F ∗ ∀ i : ( − 1) i a i type (2) λ a k − i = (2) type (1) ⇒ λ = ± 1 4 + 2 x + 3 x 2 + x 3 ∈ Z 5 [ x ] λ = − 1, type (1) λ = 1 self-reciprocal, palindromic, Gorenstein polynomials over Z p : criptography, sequences, subfields in alg. closures over Q , C : cyclotomic polynomials are self-reciprocal 2 / 11

  10. Reflexible polynomials f ( x ) = a 0 + a 1 x + . . . + a k x k ∈ F [ x ] is reflexible if ∃ λ ∈ F ∗ ∀ i : type (1) λ a k − i = a i (1) ∃ λ ∈ F ∗ ∀ i : ( − 1) i a i type (2) λ a k − i = (2) type (1) ⇒ λ = ± 1 4 + 2 x + 3 x 2 + x 3 ∈ Z 5 [ x ] λ = − 1, type (1) λ = 1 self-reciprocal, palindromic, Gorenstein polynomials over Z p : criptography, sequences, subfields in alg. closures over Q , C : cyclotomic polynomials are self-reciprocal irr. over Q / Z : char. poly. of auto. of certain unimodular latices 2 / 11

  11. Reflexible polynomials f ( x ) = a 0 + a 1 x + . . . + a k x k ∈ F [ x ] is reflexible if ∃ λ ∈ F ∗ ∀ i : type (1) λ a k − i = a i (1) ∃ λ ∈ F ∗ ∀ i : ( − 1) i a i type (2) λ a k − i = (2) type (1) ⇒ λ = ± 1 4 + 2 x + 3 x 2 + x 3 ∈ Z 5 [ x ] λ = − 1, type (1) λ = 1 self-reciprocal, palindromic, Gorenstein polynomials over Z p : criptography, sequences, subfields in alg. closures over Q , C : cyclotomic polynomials are self-reciprocal irr. over Q / Z : char. poly. of auto. of certain unimodular latices type (2) ⇒ λ 2 = ( − 1) k k odd : λ 2 = − 1 and F = Z p , p ≡ 1 mod 4 k even : λ = ± 1, 2 / 11

  12. Reflexible polynomials f ( x ) = a 0 + a 1 x + . . . + a k x k ∈ F [ x ] is reflexible if ∃ λ ∈ F ∗ ∀ i : type (1) λ a k − i = a i (1) ∃ λ ∈ F ∗ ∀ i : ( − 1) i a i type (2) λ a k − i = (2) type (1) ⇒ λ = ± 1 4 + 2 x + 3 x 2 + x 3 ∈ Z 5 [ x ] λ = − 1, type (1) λ = 1 self-reciprocal, palindromic, Gorenstein polynomials over Z p : criptography, sequences, subfields in alg. closures over Q , C : cyclotomic polynomials are self-reciprocal irr. over Q / Z : char. poly. of auto. of certain unimodular latices type (2) ⇒ λ 2 = ( − 1) k k odd : λ 2 = − 1 and F = Z p , p ≡ 1 mod 4 k even : λ = ± 1, 3 + 4 x + 2 x 2 + x 3 ∈ Z Z 5 [ x ], λ = 3, type (2) 2 / 11

  13. Our motivation: symmetries of arc-transitive graphs 3 / 11

  14. Our motivation: symmetries of arc-transitive graphs 4-val graphs with arc-transitive G ≤ Aut (Γ), not semi-simple 3 / 11

  15. Our motivation: symmetries of arc-transitive graphs 4-val graphs with arc-transitive G ≤ Aut (Γ), not semi-simple first systematic approach by Gardiner and Praeger, 94 Praeger’s normal reduction Recursive factorization by N min ⊳ G 3 / 11

  16. Our motivation: symmetries of arc-transitive graphs 4-val graphs with arc-transitive G ≤ Aut (Γ), not semi-simple first systematic approach by Gardiner and Praeger, 94 Praeger’s normal reduction Recursive factorization by N min ⊳ G Z r Classify Γ when Γ / Z p = K 1 , K 2 , C n 3 / 11

  17. Our motivation: symmetries of arc-transitive graphs 4-val graphs with arc-transitive G ≤ Aut (Γ), not semi-simple first systematic approach by Gardiner and Praeger, 94 Praeger’s normal reduction Recursive factorization by N min ⊳ G Z r Classify Γ when Γ / Z p = K 1 , K 2 , C n Z r Completely solved, except for Γ / Z p = C n and p odd 3 / 11

  18. p -coverings Γ → C (2) Z r Minimal Z n 4 / 11

  19. p -coverings Γ → C (2) Z r Minimal Z n 4 / 11

  20. p -coverings Γ → C (2) Z r Minimal Z n Classify minimal VT and ET elementary abelian covers of C (2) n 4 / 11

  21. p -coverings Γ → C (2) Z r Minimal Z n Classify minimal VT and ET elementary abelian covers of C (2) n M, Maruˇ siˇ c, Potoˇ cnik, Elementary abelian covers, JACO, 2004. 4 / 11

  22. p = C (2) Z r Z r Results: Γ / Z n , where Z p min ⊳ H : VT and ET 5 / 11

  23. p = C (2) Z r Z r Results: Γ / Z n , where Z p min ⊳ H : VT and ET Thm 1. All minimal graphs Γ arise from cyclic or negacyclic codes. 5 / 11

  24. p = C (2) Z r Z r Results: Γ / Z n , where Z p min ⊳ H : VT and ET Thm 1. All minimal graphs Γ arise from cyclic or negacyclic codes.  α 0 . . . α m 0 . . . · · · 0  . ... .   0 α 0 . . . α m .   .  ... ... ...  .   .   Z r × n   M g ( x ) = ∈ Z   p  .  ... ... ... .   .    .  ... .   . α 0 . . . α m 0   0 · · · · · · 0 α 0 . . . α m matrix associated with a proper divisor g ( x ) | x n ± 1, deg( g ( x )) = n − r 5 / 11

  25. p = C (2) Z r Z r Results: Γ / Z n , where Z p min ⊳ H : VT and ET Thm 1. All minimal graphs Γ arise from cyclic or negacyclic codes.  α 0 . . . α m 0 . . . · · · 0  . ... .   0 α 0 . . . α m .   .  ... ... ...  .   .   Z r × n   M g ( x ) = ∈ Z   p  .  ... ... ... .   .    .  ... .   . α 0 . . . α m 0   0 · · · · · · 0 α 0 . . . α m matrix associated with a proper divisor g ( x ) | x n ± 1, deg( g ( x )) = n − r Z r Γ = Γ g ( x ) has vertex set Z p × Z Z n and ( v , j ) ∼ ( v ± u j +1 , j + 1) 5 / 11

  26. Starting with a proper divisor g ( x ) | x n ± 1 6 / 11

  27. Starting with a proper divisor g ( x ) | x n ± 1 Thm 2. Γ g ( x ) is at least VT and ET. 6 / 11

  28. Starting with a proper divisor g ( x ) | x n ± 1 Thm 2. Γ g ( x ) is at least VT and ET. Lifted groups preserve the degree of symmetry (Djokovi´ c, 74) ⇒ Consider M – the largest group that lifts. When is M AT? 6 / 11

  29. Starting with a proper divisor g ( x ) | x n ± 1 Thm 2. Γ g ( x ) is at least VT and ET. Lifted groups preserve the degree of symmetry (Djokovi´ c, 74) ⇒ Consider M – the largest group that lifts. When is M AT? g ( x ) = g d ( x d ) d maximal: g d ( x ) : reduced polynomial 6 / 11

  30. Starting with a proper divisor g ( x ) | x n ± 1 Thm 2. Γ g ( x ) is at least VT and ET. Lifted groups preserve the degree of symmetry (Djokovi´ c, 74) ⇒ Consider M – the largest group that lifts. When is M AT? g ( x ) = g d ( x d ) d maximal: g d ( x ) : reduced polynomial p , and M acts on V ( C (2) Lemma. d | n and d | r = dim Z r n ) with kernel Z d 2 . 6 / 11

  31. Starting with a proper divisor g ( x ) | x n ± 1 Thm 2. Γ g ( x ) is at least VT and ET. Lifted groups preserve the degree of symmetry (Djokovi´ c, 74) ⇒ Consider M – the largest group that lifts. When is M AT? g ( x ) = g d ( x d ) d maximal: g d ( x ) : reduced polynomial p , and M acts on V ( C (2) Lemma. d | n and d | r = dim Z r n ) with kernel Z d 2 . Thm 3. M , the largest group that lifts is AT ⇔ g d ( x ) is reflexible. 6 / 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend