structure preserving treatment of pcp palindromic
play

Structure preserving treatment of PCP-palindromic eigenvalue - PowerPoint PPT Presentation

Structure preserving treatment of PCP-palindromic eigenvalue problems Christian Schr oder DFG Research Center Matheon , TU Berlin 8th GAMM Workshop Applied and Numerical Linear Algebra TU Harburg, 11. September 2008 Joint work with H.


  1. Structure preserving treatment of PCP-palindromic eigenvalue problems Christian Schr¨ oder DFG Research Center Matheon , TU Berlin 8th GAMM Workshop Applied and Numerical Linear Algebra TU Harburg, 11. September 2008 Joint work with H. Fassbender (TU Braunschweig), N. Mackey, D.S. Mackey (Western Michigan U) C. Schr¨ oder (TU Berlin) PCP-Palindromic Eigenvalue Problems GAMM LA 08 1 / 14

  2. Introduction Introduction PCP linearization (briefly) PCP Schur form Application, Numerical Experiments C. Schr¨ oder (TU Berlin) PCP-Palindromic Eigenvalue Problems GAMM LA 08 2 / 14

  3. Introduction PCP Palindromic Eigenvalue problems ◮ Consider a regular polynomial eigenvalue problem Q ( λ ) x = ( A 0 + λ A 1 + λ 2 A 2 + · · · + λ k A k ) x = 0 . with A i ∈ C n × n given, x ∈ C n , and λ ∈ C wanted C. Schr¨ oder (TU Berlin) PCP-Palindromic Eigenvalue Problems GAMM LA 08 2 / 14

  4. Introduction PCP Palindromic Eigenvalue problems ◮ Consider a regular polynomial eigenvalue problem Q ( λ ) x = ( A 0 + λ A 1 + λ 2 A 2 + · · · + λ k A k ) x = 0 . with A i ∈ C n × n given, x ∈ C n , and λ ∈ C wanted ◮ Let P be a real, square, and involutory matrix, i.e., P 2 = I . ◮ Q ( λ ) is PCP palindromic, iff A i = PA k − i P ( A is the complex conjugate of A ) C. Schr¨ oder (TU Berlin) PCP-Palindromic Eigenvalue Problems GAMM LA 08 2 / 14

  5. Introduction PCP Palindromic Eigenvalue problems ◮ Consider a regular polynomial eigenvalue problem Q ( λ ) x = ( A 0 + λ A 1 + λ 2 A 2 + · · · + λ k A k ) x = 0 . with A i ∈ C n × n given, x ∈ C n , and λ ∈ C wanted ◮ Let P be a real, square, and involutory matrix, i.e., P 2 = I . ◮ Q ( λ ) is PCP palindromic, iff A i = PA k − i P ( A is the complex conjugate of A ) ◮ This talk is a summary of a paper ⇒ [PCP] ◮ reminicent of ∗ -palindromic problems, A i = A ∗ k − i , see [MMMM2] ◮ Application: Stability analysis of time delay equations (later) C. Schr¨ oder (TU Berlin) PCP-Palindromic Eigenvalue Problems GAMM LA 08 2 / 14

  6. P Introduction Eigenvalue pairing Let ( λ, x ) be an eigenpair of Q ( λ ). Then ( A 0 + λ A 1 + λ 2 A 2 + · · · + λ k A k ) x = 0 P ( A 0 + λ A 1 + λ 2 A 2 + · · · + λ k A k ) PPx = 0 ( A k + λ A k − 1 + λ 2 A k − 2 + · · · + λ k A 0 ) Px = 0 2 A k − 2 + · · · + λ k A 0 ) Px = 0 ( A k + λ A k − 1 + λ k Q (1 /λ )( Px ) = 0 λ so, (1 /λ, Px ) is also an eigenpair. C. Schr¨ oder (TU Berlin) PCP-Palindromic Eigenvalue Problems GAMM LA 08 3 / 14

  7. Introduction Eigenvalue pairing Let ( λ, x ) be an eigenpair of Q ( λ ). Then ( A 0 + λ A 1 + λ 2 A 2 + · · · + λ k A k ) x = 0 P ( A 0 + λ A 1 + λ 2 A 2 + · · · + λ k A k ) PPx = 0 ( A k + λ A k − 1 + λ 2 A k − 2 + · · · + λ k A 0 ) Px = 0 2 A k − 2 + · · · + λ k A 0 ) Px = 0 ( A k + λ A k − 1 + λ k Q (1 /λ )( Px ) = 0 λ so, (1 /λ, Px ) is also an eigenpair. Theorem: ([PCP]) Let Q ( λ ) = P k i =0 λ i A i , A k � = 0 be a regular PCP matrix polynomial. Then the spectrum of Q ( λ ) has the pairing ( λ, 1 /λ ) . Moreover, algebraic, gemetric and partial multiplicities of the eigenvalues in each pair are equal. Here, λ = 0 is allowed and is paired with the eigenvalue ∞ . C. Schr¨ oder (TU Berlin) PCP-Palindromic Eigenvalue Problems GAMM LA 08 3 / 14

  8. Introduction Eigenvalue pairing Let ( λ, x ) be an eigenpair of Q ( λ ). Then ( A 0 + λ A 1 + λ 2 A 2 + · · · + λ k A k ) x = 0 P ( A 0 + λ A 1 + λ 2 A 2 + · · · + λ k A k ) PPx = 0 ( A k + λ A k − 1 + λ 2 A k − 2 + · · · + λ k A 0 ) Px = 0 2 A k − 2 + · · · + λ k A 0 ) Px = 0 ( A k + λ A k − 1 + λ k Q (1 /λ )( Px ) = 0 λ so, (1 /λ, Px ) is also an eigenpair. Theorem: ([PCP]) Let Q ( λ ) = P k i =0 λ i A i , A k � = 0 be a regular PCP matrix polynomial. Then the spectrum of Q ( λ ) has the pairing ( λ, 1 /λ ) . Moreover, algebraic, gemetric and partial multiplicities of the eigenvalues in each pair are equal. Here, λ = 0 is allowed and is paired with the eigenvalue ∞ . Same pairing, as ∗ -palindromic polynomials [MMMM2] C. Schr¨ oder (TU Berlin) PCP-Palindromic Eigenvalue Problems GAMM LA 08 3 / 14

  9. Introduction A method, a problem, and a remedy ◮ Eigenvalues of PCP polynomials either ◮ come in pairs ( λ, 1 /λ ), ◮ or they are on the unit circle, i.e., | λ | = 1 (those are the interesting ones for TDSs) ◮ Standard method for polynomial EVPs: Companion form ✷ ✸ ✷ ✸ A k A k − 1 A k − 2 · · · A 0 ✻ ✼ ✻ − I 0 · · · 0 ✼ I ✻ ✼ ✻ ✼ λ + . ✻ ... ✼ ✻ ... ... ✼ . ✻ ✼ ✻ ✼ . ✹ ✺ ✹ ✺ I 0 − I 0 and QZ algorithm C. Schr¨ oder (TU Berlin) PCP-Palindromic Eigenvalue Problems GAMM LA 08 4 / 14

  10. Introduction A method, a problem, and a remedy ◮ Eigenvalues of PCP polynomials either ◮ come in pairs ( λ, 1 /λ ), ◮ or they are on the unit circle, i.e., | λ | = 1 (those are the interesting ones for TDSs) ◮ Standard method for polynomial EVPs: Companion form ✷ ✸ ✷ ✸ A k A k − 1 A k − 2 · · · A 0 ✻ ✼ ✻ − I 0 · · · 0 ✼ I ✻ ✼ ✻ ✼ λ + . ✻ ... ✼ ✻ ... ... ✼ . ✻ ✼ ✻ ✼ . ✹ ✺ ✹ ✺ I 0 − I 0 and QZ algorithm ◮ Problem: neither companion form nor QZ algorithm care about PCP structure ⇒ eigenvalue pairing will only be approximate (rounding errors) ◮ Remedy: structure preserving linearization and structure preserving Schur form C. Schr¨ oder (TU Berlin) PCP-Palindromic Eigenvalue Problems GAMM LA 08 4 / 14

  11. PCP linearization (briefly) Introduction PCP linearization (briefly) PCP Schur form Application, Numerical Experiments C. Schr¨ oder (TU Berlin) PCP-Palindromic Eigenvalue Problems GAMM LA 08 5 / 14

  12. PCP linearization (briefly) L 1 , L 2 , and DL (Λ = [ λ k − 1 , . . . , λ, 1] T ) Consider the pencil spaces [MMMM1,MMMM2] { L ( λ ) = λ X + Y : L ( λ ) · (Λ ⊗ I n ) = v ⊗ Q ( λ ) , v ∈ C k } L 1 ( Q ) := { L ( λ ) = λ X + Y : (Λ T ⊗ I n ) · L ( λ ) = w T ⊗ Q ( λ ) , w ∈ C k } L 2 ( Q ) := DL ( Q ) := L 1 ( Q ) ∩ L 2 ( Q ) , with v = w ◮ generalisations of companion form (member of L 1 ( Q ) with v = e 1 ) C. Schr¨ oder (TU Berlin) PCP-Palindromic Eigenvalue Problems GAMM LA 08 5 / 14

  13. PCP linearization (briefly) L 1 , L 2 , and DL (Λ = [ λ k − 1 , . . . , λ, 1] T ) Consider the pencil spaces [MMMM1,MMMM2] { L ( λ ) = λ X + Y : L ( λ ) · (Λ ⊗ I n ) = v ⊗ Q ( λ ) , v ∈ C k } L 1 ( Q ) := { L ( λ ) = λ X + Y : (Λ T ⊗ I n ) · L ( λ ) = w T ⊗ Q ( λ ) , w ∈ C k } L 2 ( Q ) := DL ( Q ) := L 1 ( Q ) ∩ L 2 ( Q ) , with v = w ◮ generalisations of companion form (member of L 1 ( Q ) with v = e 1 ) ◮ source for structured pencils: Theorem: ([PCP]) (Existence/Uniqueness of PCP Pencils in DL ( Q )) Suppose Q ( λ ) is a PCP-polynomial with respect to the involution P. Let F be the flip matrix and let v ∈ C k be any vector such that Fv = v, and let L ( λ ) be the unique pencil in DL ( Q ) with ansatz vector v. Then L ( λ ) is a PCP-pencil with respect to the involution ˜ P = F ⊗ P. C. Schr¨ oder (TU Berlin) PCP-Palindromic Eigenvalue Problems GAMM LA 08 5 / 14

  14. PCP linearization (briefly) L 1 , L 2 , and DL (Λ = [ λ k − 1 , . . . , λ, 1] T ) Consider the pencil spaces [MMMM1,MMMM2] { L ( λ ) = λ X + Y : L ( λ ) · (Λ ⊗ I n ) = v ⊗ Q ( λ ) , v ∈ C k } L 1 ( Q ) := { L ( λ ) = λ X + Y : (Λ T ⊗ I n ) · L ( λ ) = w T ⊗ Q ( λ ) , w ∈ C k } L 2 ( Q ) := DL ( Q ) := L 1 ( Q ) ∩ L 2 ( Q ) , with v = w ◮ generalisations of companion form (member of L 1 ( Q ) with v = e 1 ) ◮ source for structured pencils: Theorem: ([PCP]) (Existence/Uniqueness of PCP Pencils in DL ( Q )) Suppose Q ( λ ) is a PCP-polynomial with respect to the involution P. Let F be the flip matrix and let v ∈ C k be any vector such that Fv = v, and let L ( λ ) be the unique pencil in DL ( Q ) with ansatz vector v. Then L ( λ ) is a PCP-pencil with respect to the involution ˜ P = F ⊗ P. ◮ Eigenvalue exclusion [MMMM1]: L ( λ ) is a linearization of Q ( λ ) iff no root of the polynomial v 1 x k − 1 + v 2 x k − 2 + . . . + v 2 x + v 1 is an eigenvalue of Q ( λ ). C. Schr¨ oder (TU Berlin) PCP-Palindromic Eigenvalue Problems GAMM LA 08 5 / 14

  15. ❶ ➊ ➍ ➊ ➍➀ ➊ ➍ ➊ ➍ ➊ ➍ ➊ ➍ ➊ ➍ ➊ ➍ PCP linearization (briefly) Example: quadratic case with A 1 = PA 1 P , P 2 = I Q ( λ ) x = λ 2 A 2 + λ A 1 + PA 2 Px = 0 , ◮ chose v = [ α, α ] T where − α/α is not an eigenvalue of Q ( λ ) C. Schr¨ oder (TU Berlin) PCP-Palindromic Eigenvalue Problems GAMM LA 08 6 / 14

  16. PCP linearization (briefly) Example: quadratic case with A 1 = PA 1 P , P 2 = I Q ( λ ) x = λ 2 A 2 + λ A 1 + PA 2 Px = 0 , ◮ chose v = [ α, α ] T where − α/α is not an eigenvalue of Q ( λ ) ◮ DL ( Q )-linearization is (rows resamble Q ( λ )) ❶ ➊ ➍ ➊ ➍➀ ➊ ➍ ➊ ➍ α A 2 α A 2 α A 1 − α A 2 α PA 2 P λ x 0 λ + = α A 2 α A 1 − α PA 2 P α PA 2 P α PA 2 P x 0 ◮ it is PCP, because ➊ ➍ ➊ ➍ ➊ ➍ ➊ ➍ α A 2 α A 2 P α A 1 − α A 2 α PA 2 P P = α A 2 α A 1 − α PA 2 P P α PA 2 P α PA 2 P P C. Schr¨ oder (TU Berlin) PCP-Palindromic Eigenvalue Problems GAMM LA 08 6 / 14

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend