on categorical models of goi lecture 2
play

On Categorical Models of GoI Lecture 2 Esfandiar Haghverdi School - PowerPoint PPT Presentation

On Categorical Models of GoI Lecture 2 Esfandiar Haghverdi School of Informatics and Computing Indiana University Bloomington USA August 25, 2009 Esfandiar Haghverdi On Categorical Models of GoILecture 2 In this lecture We shall discuss


  1. On Categorical Models of GoI Lecture 2 Esfandiar Haghverdi School of Informatics and Computing Indiana University Bloomington USA August 25, 2009 Esfandiar Haghverdi On Categorical Models of GoILecture 2

  2. In this lecture ◮ We shall discuss constructions based on a GoI Situation. ◮ I shall follow the papers: Haghverdi (MSCS 2000), Abramsky, Haghverdi & Scott (MSCS 2002). Esfandiar Haghverdi On Categorical Models of GoILecture 2

  3. Abramsky’s Program: GoI Situation G ↓ Weak Linear Categories G ( C )( I , V ) ↓ Linear Combinatory Algebra standardisation ↓ Combinatory Algebra quotienting ↓ λ -algebra Esfandiar Haghverdi On Categorical Models of GoILecture 2

  4. GoI construction (Abramsky), Int construction (JSV) C ❀ G ( C ) ◮ Objects: ( A + , A − ) where A + and A − are objects of C . Esfandiar Haghverdi On Categorical Models of GoILecture 2

  5. GoI construction (Abramsky), Int construction (JSV) C ❀ G ( C ) ◮ Objects: ( A + , A − ) where A + and A − are objects of C . ◮ Arrows: An arrow f : ( A + , A − ) − → ( B + , B − ) in G ( C ) is f : A + ⊗ B − − → A − ⊗ B + in C . Esfandiar Haghverdi On Categorical Models of GoILecture 2

  6. GoI construction (Abramsky), Int construction (JSV) C ❀ G ( C ) ◮ Objects: ( A + , A − ) where A + and A − are objects of C . ◮ Arrows: An arrow f : ( A + , A − ) − → ( B + , B − ) in G ( C ) is f : A + ⊗ B − − → A − ⊗ B + in C . ◮ Identity: 1 ( A + , A − ) = s A + , A − . Esfandiar Haghverdi On Categorical Models of GoILecture 2

  7. GoI construction (Abramsky), Int construction (JSV) C ❀ G ( C ) ◮ Objects: ( A + , A − ) where A + and A − are objects of C . ◮ Arrows: An arrow f : ( A + , A − ) − → ( B + , B − ) in G ( C ) is f : A + ⊗ B − − → A − ⊗ B + in C . ◮ Identity: 1 ( A + , A − ) = s A + , A − . ◮ Composition: Composition is given by symmetric feedback. Given f : ( A + , A − ) − → ( B + , B − ) and g : ( B + , B − ) − → ( C + , C − ), gf : ( A + , A − ) − → ( C + , C − ) is given by: gf = Tr B − ⊗ B + A + ⊗ C − , A − ⊗ C + ( β ( f ⊗ g ) α ) where α = (1 A + ⊗ 1 B − ⊗ s C − , B + )(1 A + ⊗ s C − , B − ⊗ 1 B + ) and β = (1 A − ⊗ 1 C + ⊗ s B + , B − )(1 A − ⊗ s B + , C + ⊗ 1 B − )(1 A − ⊗ 1 B + ⊗ s B − , C + ). Esfandiar Haghverdi On Categorical Models of GoILecture 2

  8. In pictures − + A A − f + B B + − B B − g + C C Esfandiar Haghverdi On Categorical Models of GoILecture 2

  9. Monoidal structure ◮ Tensor: ( A + , A − ) ⊗ ( B + , B − ) = ( A + ⊗ B + , A − ⊗ B − ) and for f : ( A + , A − ) − → ( B + , B − ) and g : ( C + , C − ) − → ( D + , D − ), f ⊗ g = (1 A − ⊗ s B + , C − ⊗ 1 D + )( f ⊗ g )(1 A + ⊗ s C + , B − ⊗ 1 D − ) ◮ Unit: ( I , I ). Esfandiar Haghverdi On Categorical Models of GoILecture 2

  10. Proposition Let C be a traced symmetric monoidal category , G ( C ) defined as above is a compact closed category. Moreover, F : C − → G ( C ) with F ( A ) = ( A , I ) and F ( f ) = f is a full and faithful embedding. This says that any traced symmetric monoidal category C arises as a monoidal subcategory of a compact closed cateorgy, namely G ( C ). Esfandiar Haghverdi On Categorical Models of GoILecture 2

  11. Proof. Sketch ◮ For ( A + , A − ) and ( B + , B − ) in G ( C ), we define s ( A + , A − ) , ( B + , B − ) = def (1 A − ⊗ s B + , B − ⊗ 1 A + )( s B + , A − ⊗ s A + , B − )(1 B + ⊗ s A + , A − ⊗ 1 B − )( s A + , B + ⊗ s B − , A − ) . Esfandiar Haghverdi On Categorical Models of GoILecture 2

  12. Proof. Sketch ◮ For ( A + , A − ) and ( B + , B − ) in G ( C ), we define s ( A + , A − ) , ( B + , B − ) = def (1 A − ⊗ s B + , B − ⊗ 1 A + )( s B + , A − ⊗ s A + , B − )(1 B + ⊗ s A + , A − ⊗ 1 B − )( s A + , B + ⊗ s B − , A − ) . ◮ The dual of ( A + , A − ) is given by ( A + , A − ) ∗ = ( A − , A + ) Esfandiar Haghverdi On Categorical Models of GoILecture 2

  13. Proof. Sketch ◮ For ( A + , A − ) and ( B + , B − ) in G ( C ), we define s ( A + , A − ) , ( B + , B − ) = def (1 A − ⊗ s B + , B − ⊗ 1 A + )( s B + , A − ⊗ s A + , B − )(1 B + ⊗ s A + , A − ⊗ 1 B − )( s A + , B + ⊗ s B − , A − ) . ◮ The dual of ( A + , A − ) is given by ( A + , A − ) ∗ = ( A − , A + ) → ( A + , A − ) ⊗ ( A + , A − ) ∗ = def s A − , A + ◮ unit, η : ( I , I ) − Esfandiar Haghverdi On Categorical Models of GoILecture 2

  14. Proof. Sketch ◮ For ( A + , A − ) and ( B + , B − ) in G ( C ), we define s ( A + , A − ) , ( B + , B − ) = def (1 A − ⊗ s B + , B − ⊗ 1 A + )( s B + , A − ⊗ s A + , B − )(1 B + ⊗ s A + , A − ⊗ 1 B − )( s A + , B + ⊗ s B − , A − ) . ◮ The dual of ( A + , A − ) is given by ( A + , A − ) ∗ = ( A − , A + ) → ( A + , A − ) ⊗ ( A + , A − ) ∗ = def s A − , A + ◮ unit, η : ( I , I ) − ◮ counit, ǫ : ( A + , A − ) ∗ ⊗ ( A + , A − ) − → ( I , I ) = def s A − , A + . Esfandiar Haghverdi On Categorical Models of GoILecture 2

  15. Proof. Sketch ◮ For ( A + , A − ) and ( B + , B − ) in G ( C ), we define s ( A + , A − ) , ( B + , B − ) = def (1 A − ⊗ s B + , B − ⊗ 1 A + )( s B + , A − ⊗ s A + , B − )(1 B + ⊗ s A + , A − ⊗ 1 B − )( s A + , B + ⊗ s B − , A − ) . ◮ The dual of ( A + , A − ) is given by ( A + , A − ) ∗ = ( A − , A + ) → ( A + , A − ) ⊗ ( A + , A − ) ∗ = def s A − , A + ◮ unit, η : ( I , I ) − ◮ counit, ǫ : ( A + , A − ) ∗ ⊗ ( A + , A − ) − → ( I , I ) = def s A − , A + . ◮ The internal homs, ◦ ( B + , B − ) = ( B + ⊗ A − , B − ⊗ A + ). ( A + , A − ) − Esfandiar Haghverdi On Categorical Models of GoILecture 2

  16. Useful facts ◮ Let A + ∼ = B + and A − ∼ = B − in C , then ( A + , A − ) ∼ = ( B + , B − ) in G ( C ). ◮ If A + ✁ B + ( f 1 , g 1 ) and A − ✁ B − ( f 2 , g 2 ) in C , then ( A + , A − ) ✁ ( B + , B − ) ( s B + , A − ( f 1 ⊗ g 2 ) , s A + , B − ( g 1 ⊗ f 2 )) in G ( C ). Esfandiar Haghverdi On Categorical Models of GoILecture 2

  17. Weak Linear Category (WLC) Definition A Weak Linear Category (WLC) ( C , !) consists of the following data: ◮ A symmetric monoidal closed category C , ◮ A symmetric monoidal functor ! : C − → C (officially, ! = (! , ϕ, ϕ I )), ◮ The following monoidal pointwise natural transformations: 1. der :! ⇒ Id 2. δ :! ⇒ !! 3. con :! ⇒ ! ⊗ ! 4. weak :! ⇒ K I . Here K I is the constant I functor. Esfandiar Haghverdi On Categorical Models of GoILecture 2

  18. Important remark ◮ Pointwise naturality: α : F ⇒ G : For all f : I − → A , α I ✲ GI FI Ff Gf ❄ ❄ α A ✲ GA FA Esfandiar Haghverdi On Categorical Models of GoILecture 2

  19. Important remark ◮ Pointwise naturality: α : F ⇒ G : For all f : I − → A , α I ✲ GI FI Ff Gf ❄ ❄ α A ✲ GA FA ◮ In the GoI models we discuss the monoidal transformations der , δ, con , weak exist but are merely pointwise natural Esfandiar Haghverdi On Categorical Models of GoILecture 2

  20. Important remark ◮ Pointwise naturality: α : F ⇒ G : For all f : I − → A , α I ✲ GI FI Ff Gf ❄ ❄ α A ✲ GA FA ◮ In the GoI models we discuss the monoidal transformations der , δ, con , weak exist but are merely pointwise natural ◮ Pointwise naturality suffices for the construction of linear combinatory algebras Esfandiar Haghverdi On Categorical Models of GoILecture 2

  21. Important remark ◮ Pointwise naturality: α : F ⇒ G : For all f : I − → A , α I ✲ GI FI Ff Gf ❄ ❄ α A ✲ GA FA ◮ In the GoI models we discuss the monoidal transformations der , δ, con , weak exist but are merely pointwise natural ◮ Pointwise naturality suffices for the construction of linear combinatory algebras ◮ We do not require (! , der , δ ) to form a comonad, Esfandiar Haghverdi On Categorical Models of GoILecture 2

  22. Important remark ◮ Pointwise naturality: α : F ⇒ G : For all f : I − → A , α I ✲ GI FI Ff Gf ❄ ❄ α A ✲ GA FA ◮ In the GoI models we discuss the monoidal transformations der , δ, con , weak exist but are merely pointwise natural ◮ Pointwise naturality suffices for the construction of linear combinatory algebras ◮ We do not require (! , der , δ ) to form a comonad, ◮ We do not require (! A , con A , weak A ) to form a comonoid. Esfandiar Haghverdi On Categorical Models of GoILecture 2

  23. Reflexive object Definition A reflexive object in a WLC ( C , !) is an object V in C with the following retracts: ◮ V − ◦ V ✁ V ◮ ! V ✁ V ◮ I ✁ V Esfandiar Haghverdi On Categorical Models of GoILecture 2

  24. Another remark Since CCCs are SMCCs, all the usual domain theoretic constructions of reflexive objects in CCCs also yield reflexive objects in the WLC-sense, as follows: Proposition Let C be a CCC and V be a reflexive object in C , i.e., V V ✁ V . Then ( C , Id ) is a WLC and V is a reflexive object in the WLC-sense. Esfandiar Haghverdi On Categorical Models of GoILecture 2

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend