on accuracy of central mass energy determination for
play

On accuracy of central mass energy determination for - PowerPoint PPT Presentation

On accuracy of central mass energy determination for FCCee_z_202_nosol_13.seq A. Bogomyagkov Budker Institute of Nuclear Physics Novosibirsk FCC-ee polarization workshop October 2017 A. Bogomyagkov (BINP) FCC-ee c.m. energy 1 / 22


  1. On accuracy of central mass energy determination for FCCee_z_202_nosol_13.seq A. Bogomyagkov Budker Institute of Nuclear Physics Novosibirsk FCC-ee polarization workshop October 2017 A. Bogomyagkov (BINP) FCC-ee c.m. energy 1 / 22

  2. Introduction: different energies Π Circumference: Design energy: E 0 magnets fields � E ( s ) ds Average energy: � E � = Π Measured energy: E meas = f ( W ) function of spin tune Invariant mass: M (central mass energy) A. Bogomyagkov (BINP) FCC-ee c.m. energy 2 / 22

  3. Introduction: spin precession frequency Ω 0 is revolution frequency. W is spin precession frequency. Gyromagnetic ratio: q = q 0 + q ′ = mc + q ′ . e 1 + q ′ W = 1 � � q 0 � � � B ⊥ � � γ + q ′ B ⊥ ( θ ) d θ = Ω 0 · 2 π q 0 � B ⊥ /γ � 1 + � γ � q ′ � � ≈ Ω 0 · , q 0 q ′ = g − 2 = 1 . 1596521859 · 10 − 3 ± 3 . 8 · 10 − 12 . q 0 2 � W � E [ MeV ] = 440 . 64843 ( 3 ) − 1 . Ω 0 A. Bogomyagkov (BINP) FCC-ee c.m. energy 3 / 22

  4. Spin distribution width: synchrotron oscillations Synchrotron oscillations: δ = ∆ E / E 0 = a · cos( ω syn t ) . a 2 a 2 � � W = Ω 0 1 + ν 0 − α 0 ν 0 + Ω 0 ( ν 0 ( 1 − α 0 ) − α 0 ) sin( ω syn t ) + α 0 Ω 0 ν 0 2 cos( 2 ω syn t ) 2 FCCee_z_202_nosol_13 Spin precession frequency distribution shifts and becomes wider by a 2 α 0 ν 0 � � = − α 0 ν 0 σ 2 � W − Ω 0 ( 1 + ν 0 ) � 2 δ = − 2 · 10 − 12 = − Ω 0 ( 1 + ν 0 ) 1 + ν 0 1 + ν 0 ∆ E = − 2 · 10 − 14 E 0 A. Bogomyagkov (BINP) FCC-ee c.m. energy 4 / 22

  5. Energy dependent momentum compaction Momentum compaction: α = α 0 + α 1 δ α 1 ¨ δ = − ω 2 syn δ − ω 2 δ 2 Synchrotron oscillations: syn α 0 α 0 σ 2 , � δ � = − α 1 δ 2 � = σ 2 � Average and RMS: � 1 − α 0 σ 2 − α 1 α 0 σ 2 � q ′ Average W : � W � δ = γ 0 Ω 0 q 0 � α 0 σ 2 � 1 − α 1 Average energy: � E � = E 0 � α 0 σ 2 − α 0 σ 2 � 1 − α 1 Measured energy: E meas = E 0 A. Bogomyagkov (BINP) FCC-ee c.m. energy 5 / 22

  6. Energy dependent momentum compaction FCCee_z_202_nosol_13 E 0 = 45 . 6 GeV, α 0 = 1 . 5 · 10 − 5 , α 1 = − 9 . 8 · 10 − 6 , σ = 3 . 8 · 10 − 4 � E � − E meas = α 0 σ 2 = 2 · 10 − 12 E 0 � E � − E 0 = − α 1 σ 2 = 1 · 10 − 7 E 0 α 0 A. Bogomyagkov (BINP) FCC-ee c.m. energy 6 / 22

  7. Longitudinal field compensation Detector field is B 0 = 2 T. Deviation of compensating field is ∆ B c = 0 . 1 T. Length of compensating solenoid is L c = 0 . 75 m. B ρ = 152 . 105 T · m, E 0 = 45 . 6 GeV, ν = 103 . 484. FCCee_z_202_nosol_13 � 2 ∆ ν = ϕ 2 8 π cot( πν ) ≈ 1 � ∆ B c 2 B 0 L c ≈ 2 × 10 − 9 . 8 π cot( πν ) B 0 B ρ ∆ E = ∆ ν · 440 . 65 ≈ 2 × 10 − 11 . E 0 E 0 A. Bogomyagkov (BINP) FCC-ee c.m. energy 7 / 22

  8. Spin distribution width: horizontal betatron oscillations Ya.S. Derbenev, et al., “Accurate calibration of the beam energy in a storage ring based on measurement of spin precession frequency of polarized particles”, Part. Accel. 10 (1980) 177-180 FCCee_z_202_nosol_13 ∂ 2 B y Sextupole fields introduce additional B ⊥ ∝ x 2 , K 2 = 1 ∂ x 2 . B ρ Spin precession frequency distribution shifts and becomes wider by ∆ ν = − 1 � � � ε x β x ( s ) + η x ( s ) 2 σ 2 K 2 ( s ) ds . δ ν 2 π ∆ ν = ∆ E = − 2 . 5 · 10 − 7 . ν E 0 A. Bogomyagkov (BINP) FCC-ee c.m. energy 8 / 22

  9. Vertical magnetic fields: horizontal correctors � ∆ B y One corrector with deflection χ : ∆ E = − χη x α Π , χ = B ρ ds . E 0 √ � ∆ E � = 2 2 sin( πν x ) � η x � RMS of energy shift: σ � β x � σ x E 0 α Π σ x is RMS of horizontal orbit variation. FCCee_z_202_nosol_13 � ∆ E � = − 1 . 2 · 10 − 3 [ m − 1 ] · σ x [ m ] , σ E 0 � � = 10 − 6 demands stability of the horizontal orbit between calibrations ∆ E σ E 0 σ x = 0 . 8 mm. A. Bogomyagkov (BINP) FCC-ee c.m. energy 9 / 22

  10. Vertical magnetic fields: quadrupoles ∂ B y Shifted quadrupole: ∆ E = − χη x χ = K 1 L · ∆ x , K 1 = 1 α Π , ∂ x . E 0 B ρ FCCee_z_202_nosol_13 ∆ E = 10 − 6 demands stability of quadrupoles position between calibrations (10 min) E 0 Quadrupole ∆ x , m 2 · 10 − 4 QC7.1: 7 . 6 · 10 − 5 QY2.1: 1 . 6 · 10 − 4 QFG2.4: 1 . 4 · 10 − 4 QF4.1: 3 . 5 · 10 − 5 QG6.1: √ 720 = 5 · 10 − 6 QF4: ∆ x / A. Bogomyagkov (BINP) FCC-ee c.m. energy 10 / 22

  11. Central mass energy: β chromaticity Invariant mass: M 2 = ( E 1 + E 2 ) 2 cos 2 ( θ ) + O ( m 2 e ) + O ( σ 2 α ) + O ( σ 2 E ) . Beta function chromaticity at IP: β x , y = β 0 x , y + β 1 x , y δ , σ 2 x , y = ε x , y β x , y . Particles with energy deviation have higher collision rate. h0 h1 × 3 × 3 10 10 h1 h1 h0 h0 1e+008 1e+008 Entries Entries Entries 1e+008 Entries 1e+008 − − 700 700 Mean Mean 5.926e 5.926e 008 008 − − − − Mean Mean 1.085e 1.085e 006 006 0.0005332 0.0005332 RMS RMS 0.0005332 0.0005332 RMS RMS 600 600 β d 500 500 1 y =15 β δ d 400 400 0y 300 300 200 200 100 100 0 0 − − − − − − − − 0.004 0.003 0.002 0.001 0 0.001 0.002 0.003 0.004 0.004 0.003 0.002 0.001 0 0.001 0.002 0.003 0.004 E1+E2 E1+E2 -2 -2 E0 E0 A. Bogomyagkov (BINP) FCC-ee c.m. energy 11 / 22

  12. Central mass energy: β chromaticity FCCee_z_202_nosol_13 d β x d β y 1 1 ∆ M ∆ M , keV β x d δ β y d δ E 0 − 1 . 1 · 10 − 6 ± 5 · 10 − 8 0 15 − 49 ± 2 . 4 − 5 . 7 · 10 − 7 ± 5 · 10 − 8 200 0 − 26 ± 2 . 4 − 1 . 6 · 10 − 6 ± 5 · 10 − 8 200 15 − 75 ± 2 . 4 1 d β y Need to measure and adjust d δ . β 0 y A. Bogomyagkov (BINP) FCC-ee c.m. energy 12 / 22

  13. Energy dependence on azimuth: full tapering Two diametrically opposite RF cavities, U 0 — energy loss per revolution, E ( 0 ) — after RF cavity. Full tapering — magnets fields are adjusted to keep design curvature, quadrupole strength etc. U 2 dE E ( 0 ) k ≈ 3 E ( 0 ) + 3 U 0 ds ∝ E 4 , E ( 0 ) 2 + O ( U 3 0 E ( s ) = , 0 ) 1 Π Π ( 1 + k · s ) 3 U 2 Average energy: � E � ≈ E ( 0 ) − U 0 0 4 − 12 E ( 0 ) . Energy at the IP: E ( IP ) = E ( 0 ) − U 0 4 . U 2 The difference: � E � − E ( IP ) ≈ − 1 E ( 0 ) 2 = 5 · 10 − 8 , for E 0 = 45 . 6 GeV (Z). 0 E ( 0 ) 12 U 2 The difference: � E � − E ( IP ) ≈ − 1 E ( 0 ) 2 = 2 · 10 − 7 , for E 0 = 80 . 5 GeV (WW). 0 E ( 0 ) 12 A. Bogomyagkov (BINP) FCC-ee c.m. energy 13 / 22

  14. Energy dependence on azimuth: partial tapering Partial tapering ( ∆ K 0 ) — fields of magnets groups are adjusted to keep approximately design curvature ( K 0 ). Equations of motion (canonical variables) σ ′ = − K 0 x ,    e 2 γ 4 � � � � − eV 0 2 π δ ( s − s 0 ) − 2 p t ′ = p 0 c K 2 sin φ s + 0 σ .  p 0 c λ RF σ 3  Solution: p t ( s ) = p 0 t − f ( s ) . � Π σ = 0 = − K 0 ( s ) x ( s ) ds = − p 0 t α Π + Π � ( K 0 f + ∆ K 0 ) η � s . 0 p 0 t = 1 α � ( K 0 f + ∆ K 0 ) η � s . A. Bogomyagkov (BINP) FCC-ee c.m. energy 14 / 22

  15. Energy dependence on azimuth: partial tapering For simple (symmetrical) cases we do need to know function f ( s ) , just at certain points. Two RF cavities and symmetrical arcs  � p t � = p 0 t − � f � = p 0 t − U 0 = � E � − E 0 ,   4 E 0 E 0  = E IP − E 0 p t ( IP ) = p 0 t − f ( IP ) = p 0 t − U 0  ,   4 E 0 E 0 � E � = E 0 + E 0 p 0 t − U 0  4 ,   E IP = E 0 + E 0 p 0 t − U 0  4 .  There is no difference between � E � and E IP in the first order. Numerical calculations are needed for not symmetrical arcs, magnet misalignments. A. Bogomyagkov (BINP) FCC-ee c.m. energy 15 / 22

  16. Collective field of the own bunch Electron in the field of own bunch will have potential energy �� 10 − 7 N p e 2 [ Gs ] � � σ x + σ y U [ eV ] = √ γ e + ln( 2 ) − 2 ln e [ C ] , r 2 πσ z [ cm ] γ e = 0 . 577 Euler constant, N p = 4 · 10 10 — bunch population, r ip = 15 mm and r arc = 20 mm — vacuum chamber radius at IP and in the arcs, σ x , IP = 6 . 2 · 10 − 6 m, σ y , IP = 3 . 1 · 10 − 8 m, , σ x , arc = 1 . 9 · 10 − 4 m, σ y , arc = 1 . 2 · 10 − 5 m. U ip = 192 keV 45 . 6 GeV = 4 . 2 · 10 − 6 , E 0 U arc = 120 keV 45 . 6 GeV = 2 . 6 · 10 − 6 . E 0 A. Bogomyagkov (BINP) FCC-ee c.m. energy 16 / 22

  17. Collective field of the opposite bunch Potential energy at the center of the bunch { x , y , s , z = s − ct } = { 0 , 0 , 0 , 0 } � − ( x + s · 2 θ ) 2 y + q − γ 2 ( s + ct ) 2 � y 2 � ∞ exp − U ( x , y , s , ct ) = − γ N p r e mc 2 2 σ 2 2 σ 2 2 γ 2 σ 2 x + q s + q √ π dq , � � � 2 σ 2 2 σ 2 2 γ 2 σ 2 0 x + q y + q s + q U ( 0 , 0 , 0 , 0 ) = − 0 . 4 MeV 45 . 6 GeV = − 9 . 3 · 10 − 6 . E 0 A. Bogomyagkov (BINP) FCC-ee c.m. energy 17 / 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend