on a secant dirichlet series and eichler integrals of
play

On a secant Dirichlet series and Eichler integrals of Eisenstein - PowerPoint PPT Presentation

On a secant Dirichlet series and Eichler integrals of Eisenstein series 28th Automorphic Forms Workshop Moab, Utah Armin Straub May 12, 2014 University of Illinois at UrbanaChampaign Based on joint work with : Bruce Berndt University of


  1. On a secant Dirichlet series and Eichler integrals of Eisenstein series 28th Automorphic Forms Workshop Moab, Utah Armin Straub May 12, 2014 University of Illinois at Urbana–Champaign Based on joint work with : Bruce Berndt University of Illinois at Urbana–Champaign On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 1 / 18

  2. Secant zeta function • Lal´ ın, Rodrigue and Rogers introduce and study ∞ sec( πnτ ) � ψ s ( τ ) = . n s n =1 • Clearly, ψ s (0) = ζ ( s ) . In particular, ψ 2 (0) = π 2 6 . √ 2) = − π 2 √ 6) = 2 π 2 EG LRR ’13 ψ 2 ( 3 , ψ 2 ( 3 For positive integers m , r , CONJ LRR ’13 ψ 2 m ( √ r ) ∈ Q · π 2 m . On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 2 / 18

  3. Basic examples of trigonometric Dirichlet series • Euler’s identity: ∞ n 2 m = − 1 1 2(2 πi ) 2 m B 2 m � (2 m )! n =1 • Half of the Clausen and Glaisher functions reduce, e.g., ∞ poly 1 ( τ ) = π 2 cos( πnτ ) 3 τ 2 − 6 τ + 2 � � � = poly m ( τ ) , . n 2 m 12 n =1 • Ramanujan investigated trigonometric Dirichlet series of similar type. From his first letter to Hardy: ∞ = 19 π 7 coth( πn ) � n 7 56700 n =1 In fact, this was already included in a general formula by Lerch. On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 3 / 18

  4. One of Ramanujan’s most well-known formulas For α, β > 0 such that αβ = π 2 and m ∈ Z , THM Ramanujan, Grosswald � � � � ∞ ∞ n − 2 m − 1 n − 2 m − 1 ζ (2 m + 1) ζ (2 m + 1) α − m � = ( − β ) − m � + + e 2 αn − 1 e 2 βn − 1 2 2 n =1 n =1 m +1 ( − 1) n B 2 n B 2 m − 2 n +2 − 2 2 m � (2 m − 2 n + 2)! α m − n +1 β n . (2 n )! n =0 On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 4 / 18

  5. One of Ramanujan’s most well-known formulas For α, β > 0 such that αβ = π 2 and m ∈ Z , THM Ramanujan, Grosswald � � � � ∞ ∞ n − 2 m − 1 n − 2 m − 1 ζ (2 m + 1) ζ (2 m + 1) α − m � = ( − β ) − m � + + e 2 αn − 1 e 2 βn − 1 2 2 n =1 n =1 m +1 ( − 1) n B 2 n B 2 m − 2 n +2 − 2 2 m � (2 m − 2 n + 2)! α m − n +1 β n . (2 n )! n =0 • In terms of ξ s ( τ ) = � cot( πnτ ) , Ramanujan’s formula becomes n s k B 2 s B 2 k − 2 s ξ 2 k − 1 | 2 − 2 k ( S − 1) = ( − 1) k (2 π ) 2 k − 1 � (2 k − 2 s )! τ 2 s − 1 . (2 s )! s =0 � a b DEF � aτ + b � ( τ ) = ( cτ + d ) − k F � F | k slash c d cτ + d operator On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 4 / 18

  6. Secant zeta function: Convergence • ψ s ( τ ) = � sec( πnτ ) has singularity at rationals with even denominator n s 10 5 5 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 � 5 � 5 � 10 Re ψ 2 ( τ + εi ) with ε = 1 / 100 Re ψ 2 ( τ + εi ) with ε = 1 / 1000 The series ψ s ( τ ) = � sec( πnτ ) THM converges absolutely if n s Lal´ ın– Rodrigue– 1 τ = p/q with q odd and s > 1 , Rogers 2013 2 τ is algebraic irrational and s � 2 . • Proof uses Thue–Siegel–Roth, as well as a result of Worley when s = 2 and τ is irrational On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 5 / 18

  7. Secant zeta function: Functional equation • Obviously, ψ s ( τ ) = � sec( πnτ ) satisfies ψ s ( τ + 2) = ψ s ( τ ) . n s THM � τ � � τ � (1 + τ ) 2 m − 1 ψ 2 m − (1 − τ ) 2 m − 1 ψ 2 m LRR, BS 1 + τ 1 − τ 2013 = π 2 m rat( τ ) On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 6 / 18

  8. Secant zeta function: Functional equation • Obviously, ψ s ( τ ) = � sec( πnτ ) satisfies ψ s ( τ + 2) = ψ s ( τ ) . n s THM � τ � � τ � (1 + τ ) 2 m − 1 ψ 2 m − (1 − τ ) 2 m − 1 ψ 2 m LRR, BS 1 + τ 1 − τ 2013 = π 2 m rat( τ ) Collect residues of the integral proof 1 � sin ( πτz ) d z I C = z s +1 . 2 πi sin( π (1 + τ ) z ) sin( π (1 − τ ) z ) C C are appropriate circles around the origin such that I C → 0 as radius( C ) → ∞ . On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 6 / 18

  9. Secant zeta function: Functional equation • Obviously, ψ s ( τ ) = � sec( πnτ ) satisfies ψ s ( τ + 2) = ψ s ( τ ) . n s THM � τ � � τ � (1 + τ ) 2 m − 1 ψ 2 m − (1 − τ ) 2 m − 1 ψ 2 m LRR, BS 1 + τ 1 − τ 2013 sin( τz ) = π 2 m [ z 2 m − 1 ] sin((1 − τ ) z ) sin((1 + τ ) z ) Collect residues of the integral proof 1 � sin ( πτz ) d z I C = z s +1 . 2 πi sin( π (1 + τ ) z ) sin( π (1 − τ ) z ) C C are appropriate circles around the origin such that I C → 0 as radius( C ) → ∞ . On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 6 / 18

  10. Secant zeta function: Functional equation • Obviously, ψ s ( τ ) = � sec( πnτ ) satisfies ψ s ( τ + 2) = ψ s ( τ ) . n s THM � τ � � τ � (1 + τ ) 2 m − 1 ψ 2 m − (1 − τ ) 2 m − 1 ψ 2 m LRR, BS 1 + τ 1 − τ 2013 sin( τz ) = π 2 m [ z 2 m − 1 ] sin((1 − τ ) z ) sin((1 + τ ) z ) � 1 � � 1 � 1 0 • In terms of T = and R = , 0 1 1 1 ψ 2 m | 1 − 2 m ( T 2 − 1) = 0 , ψ 2 m | 1 − 2 m ( R 2 − 1) = π 2 m rat( τ ) . ψ 2 m | 1 − 2 m ( γ − 1) = π 2 m rat( τ ) . COR For any γ ∈ Γ(2) , On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 6 / 18

  11. Secant zeta function: Special values For positive integers m , r , THM LRR, BS ψ 2 m ( √ r ) ∈ Q · π 2 m . 2013 proof • Any real quadratic irrational τ is fixed by some γ ∈ Γ(2) . This follows from Pell’s equation. • Combined with ψ 2 m | 1 − 2 m ( γ − 1) = π 2 m rat( τ ) , it follows that ψ 2 m ( τ ) ∈ Q ( τ ) · π 2 m . • Finally, use the fact that ψ 2 m is even. On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 7 / 18

  12. Eichler integrals • F is an Eichler integral if D k − 1 F is modular of weight k . D = q d d q EG ∞ ∞ ∞ ∞ n 2 k − 1 q n n 1 − 2 k q n σ 2 k − 1 ( n ) integrate σ 2 k − 1 ( n ) q n = q n = � � � � − − − − − → 1 − q n n 2 k − 1 1 − q n n =1 n =1 n =1 n =1 On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 8 / 18

  13. Eichler integrals • F is an Eichler integral if D k − 1 F is modular of weight k . D = q d d q EG ∞ ∞ ∞ ∞ n 2 k − 1 q n n 1 − 2 k q n σ 2 k − 1 ( n ) integrate σ 2 k − 1 ( n ) q n = q n = � � � � − − − − − → 1 − q n n 2 k − 1 1 − q n n =1 n =1 n =1 n =1 • Eichler integrals are characterized by F | 2 − k ( γ − 1) = poly( τ ) , deg poly � k − 2 . • poly( τ ) is a period polynomial of the modular form f . The period polynomial encodes the critical L -values of f . On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 8 / 18

  14. Eichler integrals • F is an Eichler integral if D k − 1 F is modular of weight k . D = q d d q EG ∞ ∞ ∞ ∞ n 2 k − 1 q n n 1 − 2 k q n σ 2 k − 1 ( n ) integrate σ 2 k − 1 ( n ) q n = q n = � � � � − − − − − → 1 − q n n 2 k − 1 1 − q n n =1 n =1 n =1 n =1 • Eichler integrals are characterized by F | 2 − k ( γ − 1) = poly( τ ) , deg poly � k − 2 . • poly( τ ) is a period polynomial of the modular form f . The period polynomial encodes the critical L -values of f . • For a modular form f ( τ ) = � a ( n ) q n of weight k , define ∞ f ( τ ) = ( − 1) k Γ( k − 1) a ( n ) ˜ � n k − 1 q n . (2 πi ) k − 1 n =1 On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 8 / 18

  15. Eichler integrals of Eisenstein series • For the Eisenstein series G 2 k , the period “polynomial” is � k � G 2 k | 2 − 2 k ( S − 1) = (2 πi ) 2 k B 2 s (2 k − 2 s )! X 2 s − 1 + ζ (2 k − 1) B 2 k − 2 s (2 πi ) 2 k − 1 ( X 2 k − 2 − 1) ˜ � . 2 k − 1 (2 s )! s =0 On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 9 / 18

  16. Eichler integrals of Eisenstein series • For the Eisenstein series G 2 k , the period “polynomial” is � k � G 2 k | 2 − 2 k ( S − 1) = (2 πi ) 2 k B 2 s (2 k − 2 s )! X 2 s − 1 + ζ (2 k − 1) B 2 k − 2 s (2 πi ) 2 k − 1 ( X 2 k − 2 − 1) ˜ � . 2 k − 1 (2 s )! s =0 • In other words, � cot( πnτ ) is an Eichler integral of G 2 k . n 2 k − 1 cot( πτ ) = 1 1 EG � π τ + j j ∈ Z N � lim N →∞ j = − N On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 9 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend