on a secant dirichlet series and eichler integrals of
play

On a secant Dirichlet series and Eichler integrals of Eisenstein - PowerPoint PPT Presentation

On a secant Dirichlet series and Eichler integrals of Eisenstein series Oberseminar Zahlentheorie Universit at zu K oln Armin Straub November 12, 2013 University of Illinois & Max-Planck-Institut at UrbanaChampaign f ur


  1. On a secant Dirichlet series and Eichler integrals of Eisenstein series Oberseminar Zahlentheorie Universit¨ at zu K¨ oln Armin Straub November 12, 2013 University of Illinois & Max-Planck-Institut at Urbana–Champaign f¨ ur Mathematik, Bonn Based on joint work with : Bruce Berndt University of Illinois at Urbana–Champaign On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 1 / 33

  2. PART I A secant Dirichlet series ∞ sec( πnτ ) � ψ s ( τ ) = n s n =1 On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 2 / 33

  3. Secant zeta function • Lal´ ın, Rodrigue and Rogers introduce and study ∞ sec( πnτ ) � ψ s ( τ ) = . n s n =1 • Clearly, ψ s (0) = ζ ( s ) . In particular, ψ 2 (0) = π 2 6 . √ 2) = − π 2 √ 6) = 2 π 2 EG LRR ’13 ψ 2 ( 3 , ψ 2 ( 3 On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 3 / 33

  4. Secant zeta function • Lal´ ın, Rodrigue and Rogers introduce and study ∞ sec( πnτ ) � ψ s ( τ ) = . n s n =1 • Clearly, ψ s (0) = ζ ( s ) . In particular, ψ 2 (0) = π 2 6 . √ 2) = − π 2 √ 6) = 2 π 2 EG LRR ’13 ψ 2 ( 3 , ψ 2 ( 3 For positive integers m , r , CONJ LRR ’13 ψ 2 m ( √ r ) ∈ Q · π 2 m . On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 3 / 33

  5. Secant zeta function: Motivation • Euler’s identity: ∞ n 2 m = − 1 1 2(2 πi ) 2 m B 2 m � (2 m )! n =1 • Half of the Clausen and Glaisher functions reduce, e.g., ∞ poly 1 ( τ ) = τ 2 2 + π 2 cos( nτ ) 4 − πτ � = poly m ( τ ) , 6 . n 2 m n =1 • Ramanujan investigated trigonometric Dirichlet series of similar type. From his first letter to Hardy: ∞ = 19 π 7 coth( πn ) � n 7 56700 n =1 In fact, this was already included in a general formula by Lerch. On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 4 / 33

  6. Secant zeta function: Convergence • ψ s ( τ ) = � sec( πnτ ) has singularity at rationals with even denominator n s 10 6 4 5 2 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 � 5 � 2 � 4 � 10 ψ 2 ( τ ) truncated to 4 and 8 terms Re ψ 2 ( τ + εi ) with ε = 1 / 1000 On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 5 / 33

  7. Secant zeta function: Convergence • ψ s ( τ ) = � sec( πnτ ) has singularity at rationals with even denominator n s 10 6 4 5 2 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 � 5 � 2 � 4 � 10 ψ 2 ( τ ) truncated to 4 and 8 terms Re ψ 2 ( τ + εi ) with ε = 1 / 1000 The series ψ s ( τ ) = � sec( πnτ ) THM converges absolutely if n s Lal´ ın– Rodrigue– 1 τ = p/q with q odd and s > 1 , Rogers 2013 2 τ is algebraic irrational and s � 2 . • Proof uses Thue–Siegel–Roth, as well as a result of Worley when s = 2 and τ is irrational On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 5 / 33

  8. Secant zeta function: Functional equation • Obviously, ψ s ( τ ) = � sec( πnτ ) satisfies ψ s ( τ + 2) = ψ s ( τ ) . n s THM � � � � τ τ (1 + τ ) 2 m − 1 ψ 2 m − (1 − τ ) 2 m − 1 ψ 2 m LRR, BS 1 + τ 1 − τ 2013 = π 2 m rat( τ ) On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 6 / 33

  9. Secant zeta function: Functional equation • Obviously, ψ s ( τ ) = � sec( πnτ ) satisfies ψ s ( τ + 2) = ψ s ( τ ) . n s THM � � � � τ τ (1 + τ ) 2 m − 1 ψ 2 m − (1 − τ ) 2 m − 1 ψ 2 m LRR, BS 1 + τ 1 − τ 2013 = π 2 m rat( τ ) Collect residues of the integral proof 1 � sin ( πτz ) d z I C = z s +1 . 2 πi sin( π (1 + τ ) z ) sin( π (1 − τ ) z ) C C are appropriate circles around the origin such that I C → 0 as radius( C ) → ∞ . On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 6 / 33

  10. Secant zeta function: Functional equation • Obviously, ψ s ( τ ) = � sec( πnτ ) satisfies ψ s ( τ + 2) = ψ s ( τ ) . n s THM � � � � τ τ (1 + τ ) 2 m − 1 ψ 2 m − (1 − τ ) 2 m − 1 ψ 2 m LRR, BS 1 + τ 1 − τ 2013 sin( τz ) = π 2 m [ z 2 m − 1 ] sin((1 − τ ) z ) sin((1 + τ ) z ) Collect residues of the integral proof 1 � sin ( πτz ) d z I C = z s +1 . 2 πi sin( π (1 + τ ) z ) sin( π (1 − τ ) z ) C C are appropriate circles around the origin such that I C → 0 as radius( C ) → ∞ . On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 6 / 33

  11. Secant zeta function: Functional equation • Obviously, ψ s ( τ ) = � sec( πnτ ) satisfies ψ s ( τ + 2) = ψ s ( τ ) . n s THM � � � � τ τ (1 + τ ) 2 m − 1 ψ 2 m − (1 − τ ) 2 m − 1 ψ 2 m LRR, BS 1 + τ 1 − τ 2013 sin( τz ) = π 2 m [ z 2 m − 1 ] sin((1 − τ ) z ) sin((1 + τ ) z ) � a b DEF � aτ + b � ( τ ) = ( cτ + d ) − k F � F | k slash c d cτ + d operator On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 6 / 33

  12. Secant zeta function: Functional equation • Obviously, ψ s ( τ ) = � sec( πnτ ) satisfies ψ s ( τ + 2) = ψ s ( τ ) . n s THM � � � � τ τ (1 + τ ) 2 m − 1 ψ 2 m − (1 − τ ) 2 m − 1 ψ 2 m LRR, BS 1 + τ 1 − τ 2013 sin( τz ) = π 2 m [ z 2 m − 1 ] sin((1 − τ ) z ) sin((1 + τ ) z ) � a b DEF � aτ + b � ( τ ) = ( cτ + d ) − k F � F | k slash c d cτ + d operator • In terms of � 1 � � 0 � � 1 � 1 − 1 0 T = , S = , R = , 0 1 1 0 1 1 the functional equations become ψ 2 m | 1 − 2 m ( T 2 − 1) = 0 , ψ 2 m | 1 − 2 m ( R 2 − 1) = π 2 m rat( τ ) . On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 6 / 33

  13. Secant zeta function: Functional equation • The matrices � 1 � � 1 � 2 0 T 2 = R 2 = , , 0 1 2 1 together with − I , generate Γ(2) = { γ ∈ SL 2 ( Z ) : γ ≡ I (mod 2) } . COR For any γ ∈ Γ(2) , ψ 2 m | 1 − 2 m ( γ − 1) = π 2 m rat( τ ) . On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 7 / 33

  14. Secant zeta function: Special values For positive integers m , r , THM LRR, BS ψ 2 m ( √ r ) ∈ Q · π 2 m . 2013 • Note that proof � X � · √ r = √ r. rY Y X • As shown by Lagrange, there are X and Y which solve Pell’s equation X 2 − rY 2 = 1 . ψ 2 m | 1 − 2 m ( γ − 1) = π 2 m rat( τ ) . On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 8 / 33

  15. Secant zeta function: Special values For positive integers m , r , THM LRR, BS ψ 2 m ( √ r ) ∈ Q · π 2 m . 2013 • Note that proof � X � · √ r = √ r. rY Y X • As shown by Lagrange, there are X and Y which solve Pell’s equation X 2 − rY 2 = 1 . • Since � 2 � X 2 + rY 2 � X � rY 2 rXY γ = = ∈ Γ(2) , X 2 + rY 2 Y X 2 XY the claim follows from the evenness of ψ 2 m and ψ 2 m | 1 − 2 m ( γ − 1) = π 2 m rat( τ ) . On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 8 / 33

  16. Secant zeta function: Special values For integers κ, µ , EG � �� = π 2 � � 1 + 3 κ � � 1 ψ 2 κ + κ µ + κ , 6 2 µ � �� 2 µ − 5 κ 2 (16 µ 2 − 15) = π 4 � � 1 + 5 κ � � 1 ψ 4 κ + κ µ + κ . 8 µ 2 (4 κµ + 3) 90 On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 9 / 33

  17. PART II Eichler integrals of Eisenstein series � i ∞ ˜ [ f ( z ) − a (0)] ( z − τ ) k − 2 d z f ( τ ) = τ On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 10 / 33

  18. Eichler integrals 1 d D = derivative 2 πi d τ h ∂ h = D − Maass raising operator 4 πy ∂ h ( F | h γ )=( ∂ h F ) | h +2 γ ∂ n h = ∂ h +2( n − 1) ◦ · · · ◦ ∂ h +2 ◦ ∂ h On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 11 / 33

  19. Eichler integrals 1 d D = derivative 2 πi d τ h ∂ h = D − Maass raising operator 4 πy ∂ h ( F | h γ )=( ∂ h F ) | h +2 γ ∂ n h = ∂ h +2( n − 1) ◦ · · · ◦ ∂ h +2 ◦ ∂ h • By induction on n , following Lewis–Zagier 2001, n � j ∂ n D n − j � n + h − 1 � � − 1 h � n ! = ( n − j )! . j 4 πy j =0 On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 11 / 33

  20. Eichler integrals 1 d D = derivative 2 πi d τ h ∂ h = D − Maass raising operator 4 πy ∂ h ( F | h γ )=( ∂ h F ) | h +2 γ ∂ n h = ∂ h +2( n − 1) ◦ · · · ◦ ∂ h +2 ◦ ∂ h • By induction on n , following Lewis–Zagier 2001, n � j ∂ n D n − j � n + h − 1 � � − 1 h � n ! = ( n − j )! . j 4 πy j =0 • In the special case n = 1 − h , with h = 2 − k , ∂ k − 1 2 − k = D k − 1 . On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 11 / 33

  21. Eichler integrals THM For all sufficiently differentiable F and all γ ∈ SL 2 ( Z ) , Bol 1949 D k − 1 ( F | 2 − k γ ) = ( D k − 1 F ) | k γ. EG � aτ + b � � � aτ + b �� ( DF ) | 2 γ = ( cτ + d ) − 2 F ′ = D F k = 2 cτ + d cτ + d On a secant Dirichlet series and Eichler integrals of Eisenstein series Armin Straub 12 / 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend