old roots in new equations
play

Old roots in new equations Christian Marboe Based on [1608.06504] - PowerPoint PPT Presentation

Old roots in new equations Christian Marboe Based on [1608.06504] + [1701.03704] + [17.] with Dmytro Volin [1706.02320] with Rouven Frassek, David Meidinger IGST 2017 1 / 32 The perturbative spectral problem in planar N = 4 SYM D O =


  1. Extension of Young diagrams u (3 | 3) 8 / 32

  2. Extension of Young diagrams u (4 | 1) 8 / 32

  3. Extension of Young diagrams u (0 | 3) 8 / 32

  4. Extension of Young diagrams u (3) C = 1 ← at each site L = 8 ✇ f † 1 | 0 � ⊗ f † 1 | 0 � ⊗ f † 1 | 0 � ⊗ f † 1 | 0 � ⊗ f † 2 | 0 � ⊗ f † 2 | 0 � ⊗ f † 2 | 0 � ⊗ f † 3 | 0 � 8 / 32

  5. Extension of Young diagrams u (3) C = 1 ← at each site L = 8 ⊗ 8 ✇ f † 1 | 0 � ⊗ f † 1 | 0 � ⊗ f † 1 | 0 � ⊗ f † 1 | 0 � ⊗ f † 2 | 0 � ⊗ f † 2 | 0 � ⊗ f † 2 | 0 � ⊗ f † 3 | 0 � 8 / 32

  6. Extension of Young diagrams | 0 � → f † 0 | ˜ u (4) 0 � C = 2 C → C + 1 L = 8 ✇ f † 1 f † 0 � ⊗ f † 1 f † 0 � ⊗ f † 1 f † 0 � ⊗ f † 1 f † 0 � ⊗ f † 2 f † 0 � ⊗ f † 2 f † 0 � ⊗ f † 2 f † 0 � ⊗ f † 3 f † 0 | ˜ 0 | ˜ 0 | ˜ 0 | ˜ 0 | ˜ 0 | ˜ 0 | ˜ 0 | ˜ 0 � 8 / 32

  7. Extension of Young diagrams | 0 � → f † 0 | ˜ u (4) 0 � C = 2 C → C + 1 L = 8 ⊗ 8 ✇ f † 1 f † 0 � ⊗ f † 1 f † 0 � ⊗ f † 1 f † 0 � ⊗ f † 1 f † 0 � ⊗ f † 2 f † 0 � ⊗ f † 2 f † 0 � ⊗ f † 2 f † 0 � ⊗ f † 3 f † 0 | ˜ 0 | ˜ 0 | ˜ 0 | ˜ 0 | ˜ 0 | ˜ 0 | ˜ 0 | ˜ 0 � 8 / 32

  8. Extension of Young diagrams -1 | ˜ | 0 � → f † 0 f † ˜ u (5) 0 � C = 3 C → C + 2 L = 8 ✇ 8 / 32

  9. pu (2 , 2 | 4) b 1 , b 2 a 1 , a 2 f 1 , f 2 , f 3 , f 4 9 / 32

  10. pu (2 , 2 | 4) b 1 , b 2 a 1 , a 2 f 1 , f 2 , f 3 , f 4 n f + n a − n b = 2 9 / 32

  11. pu (2 , 2 | 4) b 1 , b 2 a 1 , a 2 f 1 , f 2 , f 3 , f 4 n f + n a − n b = 2 α a † a † F αβ ≡ β | 0 � α f † a † Ψ α i ≡ i | 0 � f † i f † α b † α ≡ a † ≡ j | 0 � D α ˙ Φ ij ˙ α ǫ ijkl b † α f † j f † k f † ¯ Ψ ˙ ≡ l | 0 � α i ˙ b † α b † β f † 1 f † 2 f † 3 f † ¯ F ˙ ≡ 4 | 0 � α ˙ β ˙ ˙ 9 / 32

  12. Non-compact Young diagrams pu (2 , 2 | 4) [G¨ unaydin, Volin] ✻ ⑥ n a 1 n a 2 ✻ ② ❄ ❄ ✛ ✲ ⑥ n f 4 ✛ ✲ ⑥ n f 3 ✛ ✲ ⑥ n f 2 ✛ ✲ ⑥ n f 1 ✻ ✻ ⑥ n b 1 n b 2 ⑥ ❄ ❄ 10 / 32

  13. Extension and counting s 11 / 32

  14. Extension and counting s 11 / 32

  15. Extension and counting s 11 / 32

  16. Extension and counting u (2 , 3 | 2) C = − 1 ✉ s ✉ 11 / 32

  17. Extension and counting ✉ u (1 , 4 | 12) C = 3 s ✉ 11 / 32

  18. Extension and counting u (9) ✉ C = 5 s ✉ 11 / 32

  19. Extension and counting u (2 , 2 | 4) C = 0 ✉ s ✉ Multiplet counting with so ( N ) characters (susy, non-compact) � Beisert, Bianchi, � Morales, Samtleben ’04 11 / 32

  20. Extension and counting u (9) ✉ C = 5 s Simply use u ( N ) characters [CM, Volin ’17] Multiplet counting ✉ with so ( N ) characters (susy, non-compact) � Beisert, Bianchi, � Morales, Samtleben ’04 11 / 32

  21. The spectrum ∆ 0 2 3 4 2 × 2 × 2 × . . . 5 27 multiplets 4 × 12 / 32

  22. The spectrum ∆ 0 2 3 4 2 × 2 × 2 × . . . 6 144 multiplets 16 × 12 / 32

  23. The spectrum ∆ 0 2 3 4 2 × 2 × 2 × . . . 7 918 multiplets 74 × 12 / 32

  24. The spectrum ∆ 0 2 3 4 2 × 2 × 2 × . . . 8 6918 multiplets 376 × 12 / 32

  25. Q-systems The 1-loop problem Getting the machine started 13 / 32

  26. 4 | 4 Q-system Q 1234 |∅ Q 1234 | i Q 1234 | ij Q 1234 | ijk Q 1234 | 1234 256 Q ’s Q abc |∅ Q abc | i Q abc | ij Q abc | ijk Q abc | 1234 Q = Q ( u ) Q ab |∅ Q ab | i Q ab | ij Q ab | ijk Q ab | 1234 Q a |∅ Q a | i Q a | ij Q a | ijk Q a | 1234 multiplet � solution Q ∅|∅ Q ∅| i Q ∅| ij Q ∅| ijk Q ∅| 1234 14 / 32

  27. 4 | 4 Q-system Q abc | i Q ab | i QQ = Q − Q + − Q + Q − Q ac | i Q a | i Q ± = Q ( u ± i 2 ) 14 / 32

  28. 4 | 4 Q-system QQ = Q − Q + − Q + Q − Q a | ij Q a | i Q a | ijk Q a | ik Q ± = Q ( u ± i 2 ) 14 / 32

  29. 4 | 4 Q-system QQ = Q − Q + − Q + Q − Q ab | i Q ab | ij Q a | i Q a | ij Q ± = Q ( u ± i 2 ) 14 / 32

  30. 4 | 4 Q-system Boundary conditions g → 0 weights � ( u − u k ) Q = up to factors of u ± L 14 / 32

  31. 4 | 4 Q-system Q 4 , 0 Q 4 , 1 Q 4 , 2 Q 4 , 3 Q 4 , 4 Q 3 , 0 Q 3 , 1 Q 3 , 2 Q 3 , 3 Q 3 , 4 Distinguished Q-functions Q 2 , 0 Q 2 , 1 Q 2 , 2 Q 2 , 3 Q 2 , 4 ≡ polynomials of lowest degree Q 1 , 0 Q 1 , 1 Q 1 , 2 Q 1 , 3 Q 1 , 4 Q 0 , 0 Q 0 , 1 Q 0 , 2 Q 0 , 3 Q 0 , 4 14 / 32

  32. How to solve the Q-system? 15 / 32

  33. How to solve the Q-system? Q 1234 | 123 Q 123 | 123 Bethe/Baxter Q 12 | 1 Q 12 | 12 Q 12 | 123 equations Q 1 | 1 Q ∅| 1 15 / 32

  34. How to solve the Q-system? Q 1234 | 123 Q 123 | 123 Bethe/Baxter Q 12 | 1 Q 12 | 12 Q 12 | 123 equations Q 1 | 1 ( u 1 , k + i 2 ) = Q 1 | 1 ( u 1 , k − i Q 1 | 1 2 ) Q ∅| 1 ( u 2 , j + i 2 ) Q 12 ( u 2 , j + i 2 ) = − Q 1 ( u 2 , j − i ) 2 ) Q ∅ ( u 2 , j − i 2 ) Q 12 ( u 2 , j − i Q 1 ( u 2 , j + i ) . . Q ∅| 1 . 15 / 32

  35. How to solve the Q-system? Q 1234 | 123 Q 123 | 123 Bethe/Baxter Q 12 | 1 Q 12 | 12 Q 12 | 123 equations Q 1 | 1 ( u 1 , k + i 2 ) = Q 1 | 1 ( u 1 , k − i Q 1 | 1 2 ) SLOW Q ∅| 1 ( u 2 , j + i 2 ) Q 12 ( u 2 , j + i 2 ) = − Q 1 ( u 2 , j − i ) 2 ) Q ∅ ( u 2 , j − i 2 ) Q 12 ( u 2 , j − i Q 1 ( u 2 , j + i ) . . Q ∅| 1 . 15 / 32

  36. How to solve the Q-system? Q 1234 | 123 Q 123 | 123 Bethe/Baxter Q 12 | 1 Q 12 | 12 Q 12 | 123 equations Q 1 | 1 ( u 1 , k + i 2 ) = Q 1 | 1 ( u 1 , k − i Q 1 | 1 2 ) SLOW Q ∅| 1 ( u 2 , j + i 2 ) Q 12 ( u 2 , j + i 2 ) = − Q 1 ( u 2 , j − i ) 2 ) Q ∅ ( u 2 , j − i 2 ) Q 12 ( u 2 , j − i Q 1 ( u 2 , j + i ) . . Q ∅| 1 . TOO MANY SOLUTIONS 15 / 32

  37. What’s the problem? u (1 | 2) again Q 12 |∅ Q 12 | 1 s s Q 2 |∅ Q 2 | 1 s s Q 1 |∅ Q 1 | 1 s s Q ∅|∅ Q ∅| 1 16 / 32

  38. What’s the problem? Q 12 |∅ Q 12 | 1 s s Bethe/Baxter equations only guarantee polynomiality on path Q 2 |∅ Q 2 | 1 s s Q 1 |∅ Q 1 | 1 s s Q ∅|∅ Q ∅| 1 16 / 32

  39. What’s the problem? Q 12 |∅ Q 12 | 1 s s Bethe/Baxter equations only guarantee polynomiality on path Q 2 |∅ Q 2 | 1 s s Q 1 |∅ Q 1 | 1 How to impose polynomiality s s Q ∅|∅ Q ∅| 1 of full Q-system efficiently? 16 / 32

  40. Q-systems on Young diagrams u (1 | 2) Q 12 |∅ Q 12 | 1 s s Q 2 |∅ Q 2 | 1 s s Q 1 |∅ Q 1 | 1 s s Q ∅|∅ Q ∅| 1 17 / 32

  41. Q-systems on Young diagrams Q 12 |∅ Q 12 | 1 s s Q 2 |∅ Q 2 | 1 s s Q 1 |∅ Q 1 | 1 s s Q ∅|∅ Q ∅| 1 17 / 32

  42. Q-systems on Young diagrams Q 123 |∅ Q 123 | 1 s s Q ab |∅ Q ab | i Q 12 | 12 s s s Q a |∅ Q a | i Q a | ij Q 1 | ijk Q 1 | 1234 s s s s s Q ∅|∅ Q ∅| i Q ∅| ij Q ∅| ijk Q ∅| 1234 s s s s s 17 / 32

  43. Q-systems on Young diagrams All distinguished Q ’s polynomial ⇓ Q 3 , 0 Q 3 , 1 All Q ’s polynomial s s [CM, Volin ’16] Q 2 , 0 Q 2 , 1 Q 2 , 2 s s s Q 1 , 0 Q 1 , 1 Q 1 , 2 Q 1 , 3 Q 1 , 4 s s s s s Q 0 , 0 Q 0 , 1 Q 0 , 2 Q 0 , 3 Q 0 , 4 s s s s s 17 / 32

  44. Q-systems on Young diagrams #roots = #boxes right/above ② ② 0 0 ② ② ② 1 0 0 ② ② ② ② ② 3 1 0 0 0 ② ② ② ② ② 7 4 2 1 0 17 / 32

  45. Q-systems on Young diagrams RECIPE (1) Make poly. ansatz on path u 3 + d 2 u 2 + d 1 u + d 0 u + c ② ② ✏ 0 0 ✟ ✏ ✟ ✏ ✏ ✟ ✏ ✟ ✏ ✏ ✟ ✏ ✟ ✏ ✏ ✟ ✏ ✟ ✏ ② ② ② ✏ 1 0 ✟ 0 ✏ ✟ ✏ ✏ ✟ ✏ ✟ ✏ ✏ ✟ ✏ ✟ ✏ ✏ ✮ ✟ ✙ ② ② ② ② ② 3 1 0 0 0 ② ② ② ② ② 7 4 2 1 0 ■ ❅ u 7 17 / 32

  46. Q-systems on Young diagrams RECIPE (1) Make poly. ansatz on path ② ② u 3 + d 2 u 2 + d 1 u + d 0 u + c 0 0 ❅ ■ (2) Generate rest by polynomial division ② ❅ ② ② � � Q + Q − − Q − Q + 1 0 0 Q ∝ Quotient Q ❅ ■ ❅ ② ❅ ② ❅ ❘ ② ② ② 3 1 0 0 0 ❅ ❅ ❅ ❅ ② ❘ ❅ ② ❘ ❅ ② ❘ ❅ ② ❅ ❘ ② 7 4 2 1 0 17 / 32

  47. Q-systems on Young diagrams RECIPE (1) Make poly. ansatz on path ② ② u 3 + d 2 u 2 + d 1 u + d 0 u + c 0 0 ■ ❅ (2) Generate rest by polynomial division ② ❅ ② ② � � Q + Q − − Q − Q + 1 0 0 Q ∝ Quotient Q ■ ❅ ❅ ② ❅ ② ❘ ❅ ② ② ② (3) Impose vanishing remainders 3 1 0 0 0 � � Q + Q − − Q − Q + = 0 Remainder ❅ ❅ ❅ ❅ Q ② ❘ ❅ ② ❘ ❅ ② ❘ ❅ ② ❘ ❅ ② 7 4 2 1 0 17 / 32

  48. Non-compact case ✇ ✇ ✇ ② ✇ 0 2 4 11 0 same idea ✇ ✇ ✇ ✇ ✇ 0 1 2 8 0 ∼ factors of u ± L ✇ ✇ ✇ ✇ ✇ ✇ ✇ 0 0 0 5 0 0 0 ✇ ✇ ✇ ✇ ✇ 0 4 2 1 0 ✇ ✇ ✇ ✇ ✇ 0 3 4 2 0 ✇ ✇ ✇ ✇ ✇ 0 2 6 3 0 ✇ ✇ ✇ ✇ ✇ 0 1 4 4 0 ✇ ✇ ✇ ✇ ✇ ✇ 0 0 2 5 0 0 ✇ ✇ ✇ ✇ ✇ 0 1 7 1 0 ✇ ✇ ✇ ✇ ✇ ✇ 0 0 9 2 0 0 ✇ ② ✇ ✇ ✇ 0 12 4 1 0 ✇ ② ✇ ✇ ✇ 0 15 6 2 0 18 / 32

  49. Non-compact case ✇ ✇ ✇ ② ✇ 0 2 4 11 0 same idea ✇ ✇ ✇ ✇ ✇ 0 1 2 8 0 ∼ factors of u ± L ✇ ✇ ✇ ✇ ✇ ✇ ✇ 0 0 0 5 0 0 0 ✇ ✇ ✇ ✇ ✇ 0 4 2 1 0 ✇ ✇ ✇ ✇ ✇ 0 3 4 2 0 ✇ ✇ ✇ ✇ ✇ 0 2 6 3 0 ✇ ✇ ✇ ✇ ✇ 0 1 4 4 0 ✇ ✇ ✇ ✇ ✇ ✇ 0 0 2 5 0 0 ✇ ✇ ✇ ✇ ✇ 0 1 7 1 0 ✇ ✇ ✇ ✇ ✇ ✇ 0 0 9 2 0 0 ✇ ② ✇ ✇ ✇ 0 12 4 1 0 ✇ ② ✇ ✇ ✇ 0 15 6 2 0 18 / 32

  50. Performance Give generic code 15 minutes to solve per diagram (on a worn-out MacBook Air) ∆ 0 # diagrams solved total # solutions found 2 1 / 1 1 / 1 3 1 / 1 1 / 1 4 7 / 7 10 / 10 5 13 / 13 27 / 27 5.5 12 / 12 36 / 36 6 39 / 39 144 / 144 6.5 36 / 36 276 / 276 7 68 / 77 600 / 918 7.5 54 / 84 694 / 2204 8 107 / 180 1395 / 6918 19 / 32

  51. Perturbative corrections Perturbative corrections Engine architecture 20 / 32

  52. [Gromov, Kazakov, Leurent, Volin ’13,’14] Quantum Spectral Curve Q 1234 |∅ Q 1234 | i Q 1234 | ij Q 1234 | ijk Q 1234 | 1234 Q abc |∅ Q abc | i Q abc | ij Q abc | ijk Q abc | 1234 256 Q ’s Q ab |∅ Q ab | i Q ab | ij Q ab | ijk Q ab | 1234 Q a |∅ Q a | i Q a | ij Q a | ijk Q a | 1234 Q ∅|∅ Q ∅| i Q ∅| ij Q ∅| ijk Q ∅| 1234 21 / 32

  53. Quantum Spectral Curve Cut structure Q abc | 1234 r r ✁ ✁ u − 2 g 2 g ✁ ✁ ✁ ✁ ✁ ✁ r r r r ✁ r r ✁ u r r ✁ ✁ r r ✁ ✁ ✁ ✁ Q a |∅ 21 / 32

  54. Quantum Spectral Curve Q 1234 | i Q 1234 | ij Q 1234 | ijk Cut structure Q abc | i Q abc | ij Q abc | ijk r r ✁ ✁ u r r ✁ ✁ r r ✁ ✁ ✁ ✁ r r Q ab | i Q ab | ij Q ab | ijk r r ✁ r r ✁ u ✁ ✁ ✁ ✁ ✁ ✁ Q a | i Q a | ij Q a | ijk Q ∅| i Q ∅| ij Q ∅| ijk 21 / 32

  55. Quantum Spectral Curve Analytic continuation Q abc | 1234 u s s Q a |∅ 21 / 32

  56. Quantum Spectral Curve Analytic continuation P a u s s P a 21 / 32

  57. Quantum Spectral Curve Analytic continuation s s P a u s s s s s s s s P a ˜ P a = µ ab P b 21 / 32

  58. Quantum Spectral Curve Analytic continuation s s P a u s s s s µ ab = ω ij Q − ab | ij s s s s P a ˜ P a = µ ab P b 21 / 32

  59. Perturbative strategies 22 / 32

  60. Perturbative strategies P µ , sl (2) [CM,Volin ’14] 22 / 32

  61. Perturbative strategies P µ , sl (2) [CM,Volin ’14] Q-system, general [ Gromov, Sizov ] Levkovich-Maslyuk ’15 22 / 32

  62. Perturbative strategies P µ , sl (2) [CM,Volin ’14] Q-system, general [ Gromov, Sizov ] Levkovich-Maslyuk ’15 P µ , general [CM,Volin ’17] 22 / 32

  63. Key property: structure of P u � � P a r r � � � � r r r r � u � r r ˜ r r P a r r � � � � 23 / 32

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend