obscuring torus
play

obscuring torus Combes et al. 2019 3 Radiation-driven Fountain and - PDF document

12/25-27/2019 u n r e s o l v e d


  1. 活動銀河核の新描像 
 天の川銀河研究センター 近傍 近傍2型セイファートで 和田桂一 12/25-27/2019 理論懇シンポジウム (国立天文台) u n 鹿児島大学 r e s o l v e d � � Schartmann, M. Izumi, T. Imanishi, M. Norman, C. Kudoh, Y. Meijerink, R. Nagao, T. Tomisaka, K. Buchner, Y. … “ トーラス ” が直接観測 e.g. NGC 1068, Circus galaxy Combes et al. 2019 10-20 pc =みんなが考えてたより大きい Imanishi et al. 2018 2

  2. 疑似観測 意外と大きかった “obscuring torus” Combes et al. 2019 3 Radiation-driven Fountain and Origin of Torus around Active Galactic Nuclei Wada (2012) radiation-hydro modelling Multi-phase Nature of a Radiation-driven Fountain with Nuclear Starburst in a Low-mass Active Galactic Nucleus KW, Schartmann, & Meijerink (2016) SED fitting for Circinus Multi-phase Gas in the Circinus galaxy X-factor, line ratios I. Non-LTE Calculations of CO Lines KW, Fukushige, Izumi, & Tomisaka (2016) ApJ 852, 88 II. A Novel View of the Molecular and Atomic CO(3-2), [CI] Obscuring Structures Revealed with ALMA Izumi, KW, Fukushige, Hamamura & Kohno, ApJ in press NLRs: [OIII], [NII],… III. Structures of the Nuclear Ionized Gas KW, Yonekura & Nagao, ApJ in press

  3. 赤外放射は、回転軸方向が支配的 トーラス Type 2 Unified Structure of AGNs ? Type 1 Type 1 1-100 pc? NLR Urry & Padovani (1995) Super massive BH (10 6-8 M sun ) + accretion disk (AU scale )+ BLR + NRL + Obscuring molecular torus (1-100 pc) + Jet + ENLR What is the size? How is the thickness maintained? How is it formed and How does it evolve? Origin of polar dust emission? 5 Tristram+2014 VLTI/MIDI 6 Circinus galaxy

  4. • External gravity, Self-gravity – stars, BH & ISM What we should & • Heating did take into – Supernova feedback account in models. – X-ray (AGN): • Compton (for ionized gas) • Coulomb (for dense atomic, molecular gas) • Photoionization (atomic/molecular gas) – UV (AGN & stars ) • Photoionization (atomic/molecular gas) • Photo-electric heating with dust • Cooling – metals, molecules, bremsstrahlung • Radiation transfer – non-isotropic direct radiation, scattering – pressure by X-ray, UV, infrared photon for dust &electron – line forces • 磁場 • Chemistry – XDR, PDR – H2 formation/dissociation – 7 3-D Radiative Hydrodynamics of a gas disk around a SMBH Code: RHD.* (Wada12) , potential: based on HD.* (Wada+09) fixed, spherically symmetric *Uniform grid 256 3 * Ray tracing SMBH 10 6-9 M sun (256 3 rays) , * Self-gravity * Radiation pressure * Radiative cooling * X-ray heating * uniform FUV Gas disk * SNe feedback ~ 0.1-1.0 M BH * non-equilibrium chemistry R=16-32 pc L UV ( θ ) ∝ cos θ (1 + 2 cos θ ) 8

  5. Chemo -Radia'on Hydrodynamics i, j, k L X ξ ijk = e − τ ijk r 2 ijk n ijk Non-equilibrium ∆ t θ chemistry for 25 species r L UV ( θ ) ∝ cos θ (1 + 2 cos θ ) L X spherical Ádámkovics, Glassgold, Meijerink (2011) Accretion Disk Meijerink , Spaans (2005) H, H2, H+, H2+, H3+, H-, e-, O, O+, O2, O2+, O2H+, OH, OH+, H2O, H2O+, H3O+, C, C+, CO, Na, Na+, He, He+ An example of fountain flow and formation of a “torus-like” structure density Wada (2012)

  6. M_BH = 10^7 Msun M_BH = 10^6 Msun w/o supernova feedback with supernova feedback fast outflowing gas slow back flowing gas dense outflowing gas goes around the “torus” 64 pc 32 pc torus scale のガスは static ではない Three phases of hydrogen Model for Circus galaxy XDR chemistry is included 分子、中性、電離ガスは 分布も kinematics も異なる KW, Schartmann, Meijerink (2016) 12

  7. 観測を説明できるか? Radia%on-driven fountain model multi-wave length obs. ・ SED (type-1, type-2) 10 μ m feature ? ・ molecular gas (H2, CO etc.), ・ atomic gas (H, [CI] etc.) ・ ionized gas (Narrow Line Region, BLR) ・ X-ray specram Wada 2012 Radiation transfer calculation as post-processes Schartmann, KW, Prieto, Tristrum, Burkert (2014) Observing the fountain one snapshot from RHD 3D Monte Carlo (RADMC-3D) 0.1 μm Ou3lows face-on edge-on 12 μm Thick warm disk =‘torus’ 500 μm Thin cold disk 30 pc 14

  8. Schartmann+2014 SEDs change depending on 'me &viewing angle non-steady outflows causes the variation in ~Myr ER=0.13 0° 30° 90° 60° 15 Circinus galaxy (Sy2 at 4Mpc) yellow: i-band red: H α

  9. 18 Case study: Circinus galaxy KW, Schartmann, & Meijerink (2016) polar emission 12 μ m SED and 10 μ m absorption are reproduced for viewing angle > 75deg hot dust Nuclear disk should be close to edge-on! 10 μ m cold dust 90deg rotational axis 17 Tristram+ 2014 ALMA Cycle 4 Observations (Band 7 + 8) Izumi, KW+2018 CO(3-2) + [CI](1-0) ionizing cone edge-on “torus” 30 pc

  10. 分子・原子ガスの速度構造の違いを再現 20 cold molecular gas in Circinus KW, Fukushige, Izumi, Tomisaka (2018) 3D non-LTE radiative transfer for CO , C I, …, based on Wada & Tomisaka (2005): Monte Carlo based code CO (3-2) integrated intensity map , face-on CO abundance 16 pc density resolution: 0.25 pc CO abundance 19 Quantitative comparison with fountain model Izumi et al. 2018c model ALMA [CI] • Indeed, we found di ff erent line profiles for the simulated CO(3-2) and [CI](1-0) • Triple-Gaussians can well fit the profile → outflow components stand out! • Good consistency between ALMA obs. and our simulation 
 → Support the fountain scheme → Physical origin of the “torus” !?

  11. Origin of NLR in AGN Circinus torus? + funnel of ionized gas on 10 pc extinction map (K/I-band) + [OIII] brighter regions, higher dust absorption Mezcua+2016 H + Origin of NLR? outflowing ionized gas ? Fountain model + multi-dimensional RT using Cloudy (Ferland 2017) Edge-on view H β [OIII] AGN KW, Yonekura, Nagao (2018) 22

  12. 3次元構造 Fountain model の電離ガス [OIII] 88 μ m, 52 μ m での構造 松永卒論 ( 予定) 23 A new dynamical, multi-phase picture of AGN, suggested by solving basic equations ionized gas = NLR [CI] neutral gas fountain flow = “torus” nuclear starburst warm dust CO molecular gas + cold dust molecular gas 10 2 pc 10 − 1 1 10 Seyfert type AGN の典型的構造? 24

  13. 3D MHD simulation of the torus Kudoh, KW, Norman, in prep. • External gravity, Self-gravity – stars, BH & ISM What we should & • Heating did take into – Supernova feedback account in models. – X-ray (AGN): • Compton (for ionized gas) • Coulomb (for dense atomic, molecular gas) • Photoionization (atomic/molecular gas) – UV (AGN & stars ) • Photoionization (atomic/molecular gas) • Photo-electric heating with dust • Cooling – metals, molecules, bremsstrahlung • Radiation transfer – non-isotropic direct radiation, scattering – pressure by X-ray, UV, infrared photon for dust &electron – line forces • 磁場 • Chemistry – XDR, PDR – H2 formation/dissociation – 25 β < 0.1 の強い磁場、磁気乱流が形成 plasma β = thermal pressure/ magnetic pressure 26

  14. Stellar System Radius : 500pc Radius : 100pc Particles : PBH SBH Black Hole Mass : Gas Disk 回転方向 平均磁場の向き逆転: cooling/heating を考慮しても起こる(周期は長くなる) Kudoh, KW, Norman in prep. 27 BH 含む galaxy merger の計算 Mass : 10 9 M ⊙ Particles : 10 6 Mass : 10 7 M ⊙ 10 8 M ⊙ 2 × 10 5 28

  15. 【Results - Morphology】 Edge-on Face-on ▷Fiducial Model : SBH Systemを水平にPBH Systemへ向け落とす。 【Results - Accretion Rate】 ▷PBHとSBHが大きく距離を縮めたタイミングに、Super-Eddington質量降着が起こ る(PBH : 数Myr, SBH : ~ 10Myr)。 Early Phase Kawaguchi, Yutani, KW 2019 MPBH : 1.0 × 107M ⊙ → 1.7 × 107M ⊙ MSBH : 1.0 × 107M ⊙ → 2.1 × 107M ⊙

  16. mergerで持ち込まれたガスの行方 SF Kawaguchi, Yutani, KW 2019 時間変化: luminous phaseはobscureされる AGN luminosityとcolumn densityの Kawaguchi, Yutani, KW 2019 BH周辺1000pcに滞在する => obscurationに寄与 ▷持ち込まれたガスの 10~20%がBHsの成長 に使われ、 約60% がバイナリ (t = 100Myr時点で) Fiducial Model R > 1000pc 16% 100pc < R < 1000pc R < 100pc SBH PBH 8% 11% 25% 37% 3% Compton thick

  17. 今後の課題 の一部 • high-z, luminous AGNs (quasars) の ”torus” 構造 • Comp'on-thick な dust-free X 線散乱体の正 体? • accre'on disk 近傍の構造 (e.g. BLR,disk wind) との関連 • molecular ouXlow の起源 33 X-ray observations suggest a stratified structure of the torus? Fraction of obscured AGNs depends X-ray selected ~ 2000 AGNs on column density ? Buchner+2015 34

  18. 和田、塚本、小久保(2019) おまけ : AGN まわりで「惑星」 ”blanet” ?

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend