upsilon invariants and alexander polynomials of torus
play

Upsilon-invariants and Alexander polynomials of torus knots Motoo - PowerPoint PPT Presentation

Upsilon-invariants and Alexander polynomials of torus knots Motoo Tange University of Tsukuba 2016/12/20 1. Motivation and results Ozsv ath-Stipsicz-Szab o defined a concordant invariant K ( t ) (OSS14/7). Torus knots


  1. Upsilon-invariants and Alexander polynomials of torus knots Motoo Tange University of Tsukuba 2016/12/20

  2. § 1. Motivation and results Ozsv´ ath-Stipsicz-Szab´ o defined a concordant invariant Υ K ( t ) (OSS’14/7). • Torus knots • Alternating knots • Linearly independence of concordance group A brief history of Υ after OSS. • Torus knot formula in terms of semigroup (Borodzik and Livingston ’14/8) • Another reasonable definition (Livingston ’15/1) • Υ-invariant of L-space knot and Legendre transform (Borodzik-Hedden ’15/5) • g 4 of some connected-sum of torus knots, (Livingston-Van Cott ’15/8) • L-space knots in terms of formal semigroup (Feller-Krcatovich ’16/2)

  3. • (Infinite) iterated torus knots (not algebraic but L-space) (S.Wang ’16/3) • Whitehead doubles (OSS, Feller-J.Park-Ray ’16/4) • Z ∞ -summand in C ∆ (Kyungbae-M.H.Kim ’16/4) • Inequalities for general cable knots, Non-L-space cable knots (W.Chen ’16/11)

  4. Results Let K be an L-space knot. Υ K p , q ( t ) = ∗ p Υ K ( t ) + Υ T p , q ( t )

  5. Results Let K be an L-space knot. Υ K p , q ( t ) = ∗ p Υ K ( t ) + Υ T p , q ( t ) ∆ K p , q ( t ) = ∆ K ( t p )∆ T p , q ( t ) ( c . f . )

  6. Integration We define integral ∫ 2 I ( K ) = Υ K ( t ) dt 0 This invariant is similar to S 1 -integral of the Tristram-Levine signature.

  7. Integration We define integral ∫ 2 I ( K ) = Υ K ( t ) dt 0 This invariant is similar to S 1 -integral of the Tristram-Levine signature. Torus knot formula ∫ 2 n ∑ Υ T p , q ( t ) dt = − 1 I ( T p , q ) = 3( pq − a i ) 0 i =1 ∫ ( ) S 1 σ ω ( T p , q ) = − 1 pq − 1 p − 1 q + 1 3 pq

  8. § 2. Definition Definition 1 (L-space) Y : Q HS 3 Y is an L-space ⇔ for s ∈ Spin c ( Y ) HF ( Y , s ) ∼ � = � HF ( S 3 )

  9. § 2. Definition Definition 1 (L-space) Y : Q HS 3 Y is an L-space ⇔ for s ∈ Spin c ( Y ) HF ( Y , s ) ∼ � = � HF ( S 3 ) Definition 2 (L-space knot) Let K be a knot in S 3 . K is an L-space knot def ⇔ ∃ n ∈ Z > 0 s.t. the n-surgery is an L-space.

  10. § 2. Definition Definition 1 (L-space) Y : Q HS 3 Y is an L-space ⇔ for s ∈ Spin c ( Y ) HF ( Y , s ) ∼ � = � HF ( S 3 ) Definition 2 (L-space knot) Let K be a knot in S 3 . K is an L-space knot def ⇔ ∃ n ∈ Z > 0 s.t. the n-surgery is an L-space. All L-space knots are fibered knots. (Ni)

  11. § 2. Definition Definition 1 (L-space) Y : Q HS 3 Y is an L-space ⇔ for s ∈ Spin c ( Y ) HF ( Y , s ) ∼ � = � HF ( S 3 ) Definition 2 (L-space knot) Let K be a knot in S 3 . K is an L-space knot def ⇔ ∃ n ∈ Z > 0 s.t. the n-surgery is an L-space. All L-space knots are fibered knots. (Ni) { Torus knots }⊂{ Algebraic knots } ⊂{ L-space iterated torus knots }⊂{ L-space knots } ⊂{ Strongly quasi-positive knots }⊂{ quasi-positive knot } = { transverse C -link }

  12. Definition 3 (Concordance) Two knots K 0 , K 1 are concordant ⇔ ∃ a smooth annulus embedding f : S 1 × I ֒ → S 3 × I , where I = [0 , 1] and f ( S 1 × i ) = K i , where i = 0 , 1 .

  13. Definition 3 (Concordance) Two knots K 0 , K 1 are concordant ⇔ ∃ a smooth annulus embedding f : S 1 × I ֒ → S 3 × I , where I = [0 , 1] and f ( S 1 × i ) = K i , where i = 0 , 1 . Concordance is an equivalent relation between two knots. { Knots } / ∼ = C sm .

  14. Definition 3 (Concordance) Two knots K 0 , K 1 are concordant ⇔ ∃ a smooth annulus embedding f : S 1 × I ֒ → S 3 × I , where I = [0 , 1] and f ( S 1 × i ) = K i , where i = 0 , 1 . Concordance is an equivalent relation between two knots. { Knots } / ∼ = C sm . Furthermore this set admits group about the connected-sum. This is called the concordance group .

  15. (trefoil) Definition 4 (Knot Floer homology (Ozsv´ ath-Szab´ o)) C ( K ) := CFK ∞ ( K ) A double complex with respect to a Heegaard decomposition of K .

  16. Definition 5 ( Υ -invariant (Ozsv´ ath-Stipsitz-Szab´ o)) � { ( ) } � t 1 − t � ( C ( K ) , F t ) s = x ∈ C ( K ) 2 Alex ( x ) + Alg ( x ) ≤ s 2 ν ( C ( K ) , F t ) = min { s | H 0 (( C ( K ) , F t ) s → H 0 ( C ) = F surj } Υ K ( t ) = − 2 ν ( C ( K ) , F t ) Υ : C → C ([0 , 2]) C ([0 , 2]): the set of continuous functions. Υ K is a piece-wise linear function on [0 , 2].

  17. 0.5 1.0 1.5 2.0 - 0.2 - 0.4 - 0.6 - 0.8 - 1.0

  18. Properties(OSS) • Υ : C → C ([0 , 2]) (group homomorphism) 1 Υ K mr = − Υ K 2 Υ K 1 # K 2 = Υ K 1 + Υ K 2 • Υ(2 − t ) = Υ( t ) • Υ ′ K (0) = − τ ( K ) • | Υ K ( t ) | ≤ tg 4 ( K ) (0 < t < 1) • Let K be an alternating. Υ K ( t ) = (1 − | t − 1 | ) σ ( K ) 2 . Definition 6 (Integral of Υ K ) ∫ 2 I : C → R I ( K ) = Υ K ( t ) dt 0 K : an alternating. I ( K ) = σ ( K ) = − τ ( K ) 2

  19. § 3. Several formulas Fact 7 (Torus knot formula (OSS)) Let K be an L-space knot. ∆ K ( t ) = ∑ n k =0 ( − 1) k t a k (Alexander polynomial) m 0 = 0 , m 2 k = m 2 k − 1 − 1 m 2 k +1 = m 2 k − 2( a 2 k − a 2 k +1 ) + 1 Υ K ( t ) = max 0 ≤ 2 i ≤ n { m 2 i − ta 2 i } a 0 > a 1 > · · · > a 2 n

  20. T (3 , 4) ∆ T (3 , 4) = t 3 − t 2 + 1 − t − 2 + t − 3 m 0 = 0 , m 1 = − 1 , m 2 = − 2 , m 3 = − 5 , m 4 = − 6 a 0 = 3 , a 1 = 2 , a 2 = 0 , a 3 = − 2 , a 4 = − 3

  21. T (3 , 4) ∆ T (3 , 4) = t 3 − t 2 + 1 − t − 2 + t − 3 m 0 = 0 , m 1 = − 1 , m 2 = − 2 , m 3 = − 5 , m 4 = − 6 a 0 = 3 , a 1 = 2 , a 2 = 0 , a 3 = − 2 , a 4 = − 3 0.5 1.0 1.5 2.0 - 1 - 2 - 3 - 4 - 5 - 6

  22. Formal semigroup Fact 8 (Feller-Krcatovich and S.Wang) Let K be an L-space knot. g := g ( K ) Seifert genus { } #( S K ∩ [0 , m )) + t ( g − m ) Υ K ( t ) = − 2 min 2 0 ≤ m ≤ 2 g

  23. Formal semigroup Fact 8 (Feller-Krcatovich and S.Wang) Let K be an L-space knot. g := g ( K ) Seifert genus { } #( S K ∩ [0 , m )) + t ( g − m ) Υ K ( t ) = − 2 min 2 0 ≤ m ≤ 2 g S K :Formal semigroup. 2 n ∑ ( − 1) i t a i ∆ K ( t ) = i =0 (0 = a 0 < a 1 < a 2 < · · · ) ∑ ∞ ∆ K ( t ) 1 − t = t s 0 + t s 1 + t s 2 + · · · = t s n (0 = s 0 < s 1 < s 2 < · · · ) n =0 S K = { s n | n ∈ Z n ≥ 0 } : Formal semigroup

  24. Example( K = T 3 , 7 ) ∆ K ( t ) = 1 − t + t 3 − t 4 + t 6 − t 8 + t 9 − t 11 + t 12 S K = { 0 , 3 , 6 , 7 , 9 , 10 , 12 } ∪ Z n > 12 2 ̸∈ S K ⇔ 11 − 2 ∈ S K 3 ∈ S K ⇔ 11 − 3 ̸∈ S K 4 ̸∈ S K ⇔ 11 − 4 ∈ S K s ∈ S K ⇔ 11 − s ̸∈ S K S K = ⟨ 3 , 7 ⟩ Z ≥ 0 : semigroup generated by 3 , 7. S T p , q = ⟨ p , q ⟩ Z ≥ 0 : semigroup generated by p , q .

  25. Example( K = T 3 , 7 ) ∆ K ( t ) = 1 − t + t 3 − t 4 + t 6 − t 8 + t 9 − t 11 + t 12 S K = { 0 , 3 , 6 , 7 , 9 , 10 , 12 } ∪ Z n > 12 2 ̸∈ S K ⇔ 11 − 2 ∈ S K 3 ∈ S K ⇔ 11 − 3 ̸∈ S K 4 ̸∈ S K ⇔ 11 − 4 ∈ S K s ∈ S K ⇔ 11 − s ̸∈ S K S K = ⟨ 3 , 7 ⟩ Z ≥ 0 : semigroup generated by 3 , 7. S T p , q = ⟨ p , q ⟩ Z ≥ 0 : semigroup generated by p , q . S Pr ( − 2 , 3 , 7) = { 0 , 3 , 5 , 7 , 8 , 10 } ∪ Z n > 10 : not semigroup

  26. Example( K = T 3 , 7 ) ∆ K ( t ) = 1 − t + t 3 − t 4 + t 6 − t 8 + t 9 − t 11 + t 12 S K = { 0 , 3 , 6 , 7 , 9 , 10 , 12 } ∪ Z n > 12 2 ̸∈ S K ⇔ 11 − 2 ∈ S K 3 ∈ S K ⇔ 11 − 3 ̸∈ S K 4 ̸∈ S K ⇔ 11 − 4 ∈ S K s ∈ S K ⇔ 11 − s ̸∈ S K S K = ⟨ 3 , 7 ⟩ Z ≥ 0 : semigroup generated by 3 , 7. S T p , q = ⟨ p , q ⟩ Z ≥ 0 : semigroup generated by p , q . S Pr ( − 2 , 3 , 7) = { 0 , 3 , 5 , 7 , 8 , 10 } ∪ Z n > 10 : not semigroup { } #( S K ∩ [0 , m )) + t ( g − m ) Υ K ( t ) = − 2 min 2 0 ≤ m ≤ 2 g

  27. Formal semigroup of cable knots Formal semigroup S K p , q p ≥ 2 and q ≥ p (2 g ( K ) − 1), then S K p , q = pS K + q Z ≥ 0 . For example: S T (2 , 3) 3 , 5 = 3 ⟨ 2 , 3 ⟩ Z ≥ 0 + 5 Z ≥ 0 = ⟨ 6 , 9 , 5 ⟩ Z ≥ 0

  28. Fact 9 (Torus knot relation (Feller and Krcatovich)) Let p , q be positive integers p , q (with relatively prime). Then, we have Υ T p , q + p = Υ T p , q + Υ T p , p +1

  29. Torus knot formula Let p , q be positive integers as above. 1 q / p = a 1 + = [ a 1 , · · · , a n ] , a 2 + · · · + 1 a n where a i are non-negative integers. Corollary 10 (Continued fraction expansion formula (FK)) n ∑ Υ T p , q = a i Υ p i , p i +1 , i =1 where p i is the denominator of [ a i , · · · , a n ]

  30. Υ( C torus ) = ⟨ Υ p , p +1 | p ∈ Z p ≥ 1 ⟩ C torus : the subgroup generated by torus knots in C . { Υ p , p +1 | p ∈ N > 1 } are linearly independent in C ([0 , 2]).

  31. Corollary 11 (T.) ∑ n I ( T p , q ) = − 1 3( pq − a i ) i =1

  32. Corollary 11 (T.) ∑ n I ( T p , q ) = − 1 3( pq − a i ) i =1 Proof I ( T p i , p i +1 ) = − p 2 i − 1 3 ∑ n ∑ n a i I ( T p i , p i +1 ) = − 1 a i ( p 2 I ( T p , q ) = i − 1) 3 i =1 i =1

  33. From the derivative at t = 0 of Υ T p , q = ∑ n i =1 a i Υ T pi , pi − 1 we have ∑ n ( p − 1)( q − 1) = a i p i ( p i − 1) . (1) i =1 n ∑ a i p i = q + p − 1 (2) i =1 3 ( pq − ∑ n From (1), (2) we have I ( T p , q ) = − 1 i =1 a i ). ✷

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend