optimal rendezvous algorithms for two asynchronous mobile
play

Optimal Rendezvous -Algorithms for Two Asynchronous Mobile Robots - PowerPoint PPT Presentation

OPODIS 2018, Hong Kong, 2018/12/19 Optimal Rendezvous -Algorithms for Two Asynchronous Mobile Robots with External-Lights Takashi OKUMURA Koichi WADA Xavier DFAGO Hosei University Hosei University Tokyo Institute of Technology Japan


  1. OPODIS 2018, Hong Kong, 2018/12/19 Optimal Rendezvous π“œ -Algorithms for Two Asynchronous Mobile Robots with External-Lights Takashi OKUMURA Koichi WADA Xavier DΓ‰FAGO Hosei University Hosei University Tokyo Institute of Technology Japan Japan Japan December 2018

  2. Optimal Rendezvous π“œ -Algorithms for Two Asynchronous Mobile Robots with External-Lights

  3. Rendezvous External-Lights π“œ -Algorithms

  4. Autonomous Mobile Robots not these robots! 4 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  5. Autonomous Mobile Robots Theoretical model β€£ Suzuki and Yamashita’s seminal work Distributed anonymous mobile robots, by I. Suzuki and M. Yamashita, SIAM J. Computing , 28(4): 1347-1363(1999) Coordination task by Mobile Robots β€£ Rendezvous , Gathering, Convergence, Formation ... Rendezvous β€£ Reach same location in finite steps Question β€£ β€œpower of lights" and additional assumptions 
 to solve Rendezvous 5 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  6. Outline Model(s) 
 Related Work 
 Our Results 
 Conclusion 
 6 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  7. Model(s)

  8. 
 Autonomous Mobile Robots (Basic model) Robot: Point on an infinite 2D-space β€£ No global coordinate system (Local only) β€£ Anonymous (No distinguished ID) β€£ Oblivious (No memory) β€£ Deterministic β€£ Uniform (Identical algorithm) β€£ No communication (Observe the environment) 
 β€£ With lights (more later) 8 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  9. Execution: Look-Compute-Move Look β€£ Take a snapshot of all robots' current locations (in terms of LCS) Compute β€£ Deciding the next position and color Move Change color β€£ Move to the next position Snapshot ! time robot L C M Look Compute Move 9 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  10. Scheduler LCM . r Centralized t L C M L C M n e β€£ LCM atomic; 1 robot at a time C L C M L C M FSYNC c n L C M L C M L C M L C M y β€£ LCM atomic; all robots together S F L C M L C M L C M L C M SSYNC c β€£ LCM atomic; subset of robots n L C M L C M L C M y S S L C M L C M ASYNC β€£ no bounds on delays/durations c n L M C M L C y LC-Atomic ASYNC S A C L M L C M L M C β€£ LC atomic 10 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  11. 
 Difficulty of Rendezvous Move toHalf (midpoint) 
 FSYNC execution β€£ Rendezvous SOLVED ! 
 Centralized execution β€£ Convergence achieved β€£ Rendezvous NOT SOLVED [20] I. Suzuki, M. Yamashita. Distributed anonymous mobile robots . SIAM J. Comput. , 28(4):1347–1363, 1999. 11 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  12. 
 Difficulty of Rendezvous Move to Other 
 Centralized execution β€£ Rendezvous SOLVED ! 
 FSYNC execution β€£ Swap places forever β€£ Rendezvous NOT SOLVED => requires a Stay move 12 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  13. Light Models β„“ ∈ L #Colors β€£ log(|L|) bits of information Full light ( β„“ ( me ), β„“ ( other ) ) β€£ can observe: own and others' color Internal light ( Fstate ) β€£ can observe: own color only β„“ ( me ) β€£ basically log(|L|) bits register External light ( Fcomm ) β„“ ( other ) β€£ can observe: others' color only [4] S. Das, P. Flocchini, G. Prencipe, N. Santoro, and M. Yamashita. Autonomous mobile robots with lights. Theor. Comput. Sci. , 609:171–184, 2016 [10] P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita. Rendezvous with constant memory . Theor. Comput. Sci. , 621(C):57–72, 2016. 13 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  14. Example: SSYNC, Full(2) other is Black β‡’ οΏ½οΏ½οΏ½οΏ½ other is Black : other is White β‡’ οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½ A B other is White β‡’ οΏ½οΏ½οΏ½οΏ½οΏ½οΏ½ [21] G. Viglietta. Rendezvous of two robots with visible bits . In Proc. 9th ALGOSENSORS , pp. 291–306, 2014. 14 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  15. Movement Restriction Rigid β€£ Robots always reach the destination Non-rigid β€£ may stop before reaching the destination β€£ guarantee to move by at least Ξ΄ (for some unknown Ξ΄ >0) Non-rigid with Ξ΄ β€£ robots know the value of Ξ΄ Ξ΄ destination destination Movement is Non-Rigid Movement is Rigid 15 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  16. Algorithm Properties Self-Stabilizing β€£ arbitrary initial configurations 
 Quasi Self-Stabilizing β€£ robots start with the same arbitrary color (whichever). 
 non QSS β€£ robots start with some specific colors. 16 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  17. Related Work

  18. Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC – 0 not at all – quasi – ( 𝛆 ) SSYNC self-stabilizing rigid non Rigid – LC-atomic non Rigid with Ξ΄ – ( 𝛆 ) ASYNC rigid – ASYNC – ( 𝛆 ) rigid 18 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  19. Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC – 0 – 2 π“œ – ( 𝛆 ) SSYNC rigid – LC-atomic – ( 𝛆 ) ASYNC rigid – ASYNC – ( 𝛆 ) rigid [21] G. Viglietta. Rendezvous of two robots with visible bits . In Proc. 9th ALGOSENSORS , pp. 291–306, 2014. 19 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  20. β•³ 
 
 Algorithm class π“œ Algorithm 
 observation destination ( β„“ ( me ), β„“ ( other ) ) ↦ Ξ» ∈ ℝ colors Destination point 
 destination (1 βˆ’ Ξ» ) β‹… me.pos Ξ» β‹… other.pos = + Examples β€£ toOther ( Ξ» = 1) other β€£ toHalf ( Ξ» = 0.5) β€£ Stay me ( Ξ» = 0) destination [21] G. Viglietta. Rendezvous of two robots with visible bit . In Proc. 9th ALGOSENSORS , pp. 291–306, 2014. 20 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  21. Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC – 0 – 2 π“œ – ( 𝛆 ) SSYNC rigid – LC-atomic – ( 𝛆 ) ASYNC rigid – ASYNC – ( 𝛆 ) rigid [21] G. Viglietta. Rendezvous of two robots with visible bit . In Proc. 9th ALGOSENSORS , pp. 291–306, 2014. 21 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  22. Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC – 0 – 2 π“œ – ( 𝛆 ) SSYNC rigid – LC-atomic – ( 𝛆 ) ASYNC rigid – (3,3) π“œ (lower bound, upper bound) ASYNC – ( 𝛆 ) rigid [21] G. Viglietta. Rendezvous of two robots with visible bit . In Proc. 9th ALGOSENSORS , pp. 291–306, 2014. 22 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  23. Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC – 0 – 2 π“œ – ( 𝛆 ) SSYNC rigid – 2 π“œ LC-atomic – ( 𝛆 ) ASYNC rigid – (3,3) π“œ ASYNC – ( 𝛆 ) rigid 2 π“œ [21] G. Viglietta. Rendezvous of two robots with visible bit . In Proc. 9th ALGOSENSORS , pp. 291–306, 2014. [17] T. Okumura, K. Wada, Y. Katayama. Optimal asynchronous rendezvous for mobile robots with lights , In Proc. 19th SSS , Nov. 2017. 23 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  24. Related Work: not π“œ full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC – 0 – – ( 𝛆 ) SSYNC rigid – LC-atomic – ( 𝛆 ) ASYNC rigid not class π“œ – 2 ASYNC – ( 𝛆 ) uses position info: 
 rigid distinct vs. gathered [11] A. Heriban, X. DΓ©fago, S. Tixeuil. Optimally gathering two robots , In Proc. 19th ICDCN , Jan. 2018. 24 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  25. Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC – 0 – 2 π“œ – ( 𝛆 ) SSYNC rigid – 2 π“œ LC-atomic – ( 𝛆 ) ASYNC rigid – (3,3) π“œ ASYNC – ( 𝛆 ) rigid 2 π“œ 25 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  26. External Lights

  27. Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC – 0 – 2 π“œ – ( 𝛆 ) SSYNC rigid – 2 π“œ LC-atomic – ( 𝛆 ) ASYNC rigid – (3,3) π“œ ASYNC – ( 𝛆 ) rigid 2 π“œ 27 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  28. Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC – 0 – 2 π“œ 3 π“œ – ( 𝛆 ) SSYNC rigid – 2 π“œ LC-atomic – ( 𝛆 ) ASYNC rigid – (3,3) π“œ ASYNC – ( 𝛆 ) rigid 2 π“œ [10] P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita. Rendezvous with constant memory . Theor. Comput. Sci. , 621(C):57–72, March 2016. 28 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

  29. Related Work full external Scheduler Mvmt not QSS Quasi SS SS not QSS Quasi SS SS FSYNC – 0 – 2 π“œ 3 π“œ – ( 𝛆 ) SSYNC rigid – 2 π“œ LC-atomic – ( 𝛆 ) ASYNC rigid – (3,3) π“œ ∞ π“œ ASYNC – ( 𝛆 ) rigid 2 π“œ [10] P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita. Rendezvous with constant memory . Theor. Comput. Sci. , 621(C):57–72, March 2016. 29 T.Okumura, K.Wada, X.DΓ©fago OPODIS 2018, Hong Kong, 2018/12/19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend