essential p dimension of a normalizer of a maximal torus
play

Essential p -dimension of a normalizer of a maximal torus Mark L. - PowerPoint PPT Presentation

Essential p -dimension of a normalizer of a maximal torus Mark L. MacDonald University of British Columbia May 2011 Mark L. MacDonald Essential p -dimension of a normalizer of a maximal torus Essential dimension Let k 0 be a field, and


  1. Essential p -dimension of a normalizer of a maximal torus Mark L. MacDonald University of British Columbia May 2011 Mark L. MacDonald Essential p -dimension of a normalizer of a maximal torus

  2. Essential dimension Let k 0 be a field, and consider a functor F : Fields / k 0 → Sets Definition k The essential dimension of x ∈ F ( k ) is ed k 0 ( x ) := min { tr . deg k 0 ( L ) | x is defined over L } . L The essential dimension of F is k 0 ed k 0 ( F ) := sup { ed k 0 ( x ) |∀ x ∈ F ( k ) } . Mark L. MacDonald Essential p -dimension of a normalizer of a maximal torus

  3. Essential dimension Let k 0 be a field, and consider a functor F : Fields / k 0 → Sets Definition k The essential dimension of x ∈ F ( k ) is ed k 0 ( x ) := min { tr . deg k 0 ( L ) | x is defined over L } . L The essential dimension of F is k 0 ed k 0 ( F ) := sup { ed k 0 ( x ) |∀ x ∈ F ( k ) } . ed( G ) := ed( H 1 ( − , G )) . Mark L. MacDonald Essential p -dimension of a normalizer of a maximal torus

  4. Essential dimension Let k 0 be a field, and consider a functor F : Fields / k 0 → Sets Definition k The essential dimension of x ∈ F ( k ) is ed k 0 ( x ) := min { tr . deg k 0 ( L ) | x is defined over L } . L The essential dimension of F is k 0 ed k 0 ( F ) := sup { ed k 0 ( x ) |∀ x ∈ F ( k ) } . ed( G ) := ed( H 1 ( − , G )) . ed( SL n ) = ed( GL n ) = ed( Sp 2 n ) = 0 . Mark L. MacDonald Essential p -dimension of a normalizer of a maximal torus

  5. Essential p -dimension Definition k ′ Let p be a prime. The essential p-dimension of � � � � x ∈ F ( k ) is � � � � L k ed( x ; p ) := min { ed( x k ′ ) | k ′ / k of finite degree � � � } . � � not divisible by p � � � � The essential p-dimension of F is ed( F ) := sup { ed( x ; p ) |∀ x ∈ F ( k ) } . k 0 Mark L. MacDonald Essential p -dimension of a normalizer of a maximal torus

  6. Essential p -dimension Definition k ′ Let p be a prime. The essential p-dimension of � � � � x ∈ F ( k ) is � � � � L k ed( x ; p ) := min { ed( x k ′ ) | k ′ / k of finite degree � � � } . � � not divisible by p � � � � The essential p-dimension of F is ed( F ) := sup { ed( x ; p ) |∀ x ∈ F ( k ) } . k 0 0 ≤ ed( G ; p ) ≤ ed( G ) . Mark L. MacDonald Essential p -dimension of a normalizer of a maximal torus

  7. Goal of this talk Let G be a connected (almost) simple split linear algebraic group, with split maximal torus T . Then the normalizer fits in an exact sequence 1 → T → N → W → 1 . Goal Find the exact value of ed( N ; p ). Mark L. MacDonald Essential p -dimension of a normalizer of a maximal torus

  8. Let N be an extension of a p -group by a torus; i.e. an algebraic group such that 1 → T → N → F → 1. Mark L. MacDonald Essential p -dimension of a normalizer of a maximal torus

  9. Let N be an extension of a p -group by a torus; i.e. an algebraic group such that 1 → T → N → F → 1. Theorem [L¨ otscher, M-, Meyer, Reichstein, 2010] Assume every finite field extension of k has degree a power of p . min dim( V ) − dim N ≤ ed( N ; p ) ≤ min dim( W ) − dim N , where the minimums are taken over all N -representations defined over k such that V is p -faithful, and W is p -generically free. A representation is said to be p-faithful if its kernel is finite order not divisible by p . If additionally N / ker is generically free, then the representation is said to be p -generically free. Mark L. MacDonald Essential p -dimension of a normalizer of a maximal torus

  10. Discrete data To a split algebraic group we can associate the following discrete data: Root system R Character lattice ˆ T Weyl group representation W → GL( ˆ T ) ˆ T Spin 16 � ������� � � � � � � ˆ ˆ T SO 16 T HSpin 16 � � � � � � � � � � � � � � ˆ T PSO 16 Mark L. MacDonald Essential p -dimension of a normalizer of a maximal torus

  11. Discrete data To a split algebraic group we can associate the following discrete data: Root system R Character lattice ˆ T Weyl group representation W → GL( ˆ T ) ˆ ˆ T Spin 16 T SL 9 � ������� � ������� � � � � � ˆ ˆ ˆ = ˆ T SO 16 T HSpin 16 T E 8 = T SL 9 /µ 3 � � � ������� � � � � � � � � � � � ˆ ˆ T PSO 16 T PSL 9 Mark L. MacDonald Essential p -dimension of a normalizer of a maximal torus

  12. Representations vs. subsets of the character lattice Assume 1 → T → N → F → 1 with T split and F constant p -group. An N -representation decomposes as V = ⊕ λ ∈ Λ V λ for some F -invariant subset Λ ⊂ ˆ T , V � Λ . V is p -faithful iff Λ is p-generating (i.e. generates a sublattice of ˆ T whose index is not divisible by p ). Mark L. MacDonald Essential p -dimension of a normalizer of a maximal torus

  13. Representations vs. subsets of the character lattice Assume 1 → T → N → F → 1 with T split and F constant p -group. An N -representation decomposes as V = ⊕ λ ∈ Λ V λ for some F -invariant subset Λ ⊂ ˆ T , V � Λ . V is p -faithful iff Λ is p-generating (i.e. generates a sublattice of ˆ T whose index is not divisible by p ). Conversely: If N = N G ( T ) for a split maximal torus in a simple algebraic group, then we can construct an N -representation from an F -invariant subset of ˆ T . Λ � V Λ . Mark L. MacDonald Essential p -dimension of a normalizer of a maximal torus

  14. Symmetric p -rank Definition The symmetric p-rank of an (integral) representation W → GL( L ), is the minimal size of an F -invariant p -generating subset of L , where F ⊂ W is a Sylow p -subgroup. Mark L. MacDonald Essential p -dimension of a normalizer of a maximal torus

  15. Symmetric p -rank Definition The symmetric p-rank of an (integral) representation W → GL( L ), is the minimal size of an F -invariant p -generating subset of L , where F ⊂ W is a Sylow p -subgroup. For example, L = Z , and W = Z / 2 acting by negation. Then the symmetric 2-rank equals 2, by taking Λ = {− 1 , 1 } , or Λ = {− 3 , 3 } , etc. Mark L. MacDonald Essential p -dimension of a normalizer of a maximal torus

  16. Example: E 8 , p = 5 F = W ( E 8 ) (5) ∼ = W ( A 4 ) (5) × W ( A 4 ) (5) . α 2 α 1 α 3 α 4 α 5 α 6 α 7 α 8 α 0 Mark L. MacDonald Essential p -dimension of a normalizer of a maximal torus

  17. Example: E 8 , p = 5 F = W ( E 8 ) (5) ∼ = W ( A 4 ) (5) × W ( A 4 ) (5) . ���� ���� α 2 ���� ���� ���� ���� ���� ���� α 1 α 3 α 4 α 5 α 6 α 7 α 8 α 0 1) Consider elements of ˆ T E 8 in the Z -basis { α 1 , · · · , α 8 } . If Λ ⊂ ˆ T E 8 is 5-generating, it must contain an element whose α 5 coefficient is not divisible by 5. 2) Such an element has F -orbit of size 25. 3) Therefore ed( N E 8 ( T ); 5) = 25 − 8 = 17. Mark L. MacDonald Essential p -dimension of a normalizer of a maximal torus

  18. Other exceptional cases φ G p SymRank( φ ; p ) ( K ) 2 A 2 G 2 2 4 n 1 A 2 G 2 3 3 n 2 D 4 F 4 2 16 y 3 D 4 3 9 y F 4 1 E 6 2 16 y E 6 2 E 6 2 E 6 2 32 y 1 E 7 2 64 y E 7 1 E +2 2 E 7 2 40 y 7 1 E 8 E 8 2 128 y 1 E 6 E 6 3 27 y 1 E +3 3 E 6 3 27 y 6 1 E 7 E 7 3 27 y 1 E 8 E 8 3 81 y 1 E 8 E 8 5 25 y Mark L. MacDonald Essential p -dimension of a normalizer of a maximal torus

  19. Essential p -dimension of Weyl groups W ( R ) H 1 ( k , N ) ։ H 1 ( k , G ) ⇒ ed( G ; p ) ≤ ed( N ; p ) H 1 ( k , N ) ։ H 1 ( k , W ) ⇒ ed( W ; p ) ≤ ed( N ; p ) Mark L. MacDonald Essential p -dimension of a normalizer of a maximal torus

  20. Essential p -dimension of Weyl groups W ( R ) H 1 ( k , N ) ։ H 1 ( k , G ) ⇒ ed( G ; p ) ≤ ed( N ; p ) H 1 ( k , N ) ։ H 1 ( k , W ) ⇒ ed( W ; p ) ≤ ed( N ; p ) ed( W ( R ); p ) p = 0 p = 2 p = 3 p = 5 p = 7 p ≥ 11 ⌊ n +1 A n ?? 2 ⌋ ⌊ ( n + 1) / p ⌋ ⌊ n / p ⌋ B n n n C n n n ⌊ n / p ⌋ D n ( n odd) n − 1 n − 1 ⌊ n / p ⌋ D n ( n even) n n ⌊ n / p ⌋ E 6 ?? 4 3 1 0 0 7 7 3 1 1 0 E 7 E 8 8 8 4 2 1 0 4 4 2 0 0 0 F 4 G 2 2 2 1 0 0 0 Mark L. MacDonald Essential p -dimension of a normalizer of a maximal torus

  21. Summary Convert the essential dimension problem ed( N ; p ) into a problem about Weyl group actions on character lattices. Compute the symmetric p -rank by considering each connected simple split group separately. In “most” cases, the bounds match: min dim V − dim N ≤ ed( N ; p ) ≤ min dim W − dim N , where V is p -faithful, and W is p -gen. free. All known cases are consistent with the conjecture that the upper bound is an equality Mark L. MacDonald Essential p -dimension of a normalizer of a maximal torus

  22. Appendix: D n lattices φ G p Conditions SymRank( φ ; p ) ( K ) 2 2 r +2 ( s − 1) n = 2 r s , s > 1 y 1 D n PSO 2 n 2 n = 2 r ≥ 4 2 2 r y 2 2 r +2 ( s − 1) n = 2 r s , s > 1 y 2 D n PSp 2 n 2 n = 2 r ≥ 4 2 2 r y 1 D +2 2 n − 1 HSpin 2 n 2 n ≥ 6 y n 1 I n 2 n ≥ 4 2 n n SO 2 n 2 I n Sp 2 n , SO 2 n +1 2 n ≥ 2 2 n n 2 n − 1 n ≥ 5 odd y 1 D +4 2 Spin 2 n 2 n − 1 + 2 r +1 n n ≥ 4 even y 2 D +4 2 n Spin 2 n +1 2 n ≥ 2 y n 3 D 4 F 4 3 9 y Mark L. MacDonald Essential p -dimension of a normalizer of a maximal torus

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend