o n s t r a n g e n e s s i n n a 6 1 s h i n e
play

O n s t r a n g e n e s s i n N A 6 1 / S H I N E M a c i e j L e w - PowerPoint PPT Presentation

P h D S e m i n a r Wrocaw, Feb 28 2018 O n s t r a n g e n e s s i n N A 6 1 / S H I N E M a c i e j L e w i c k i mlewicki@ift.uni.wroc.pl University of Wrocaw Institute of Theoretical Physics Section 1 Strangeness in Heavy Ion


  1. P h D S e m i n a r Wrocław, Feb 28 2018 O n s t r a n g e n e s s i n N A 6 1 / S H I N E M a c i e j L e w i c k i mlewicki@ift.uni.wroc.pl University of Wrocław Institute of Theoretical Physics

  2. Section 1 Strangeness in Heavy Ion Collisions

  3. Strangeness In particle physics: Strangeness ( S ) – property of particles, quantum number. Defined as: S = ( n s − n ¯ s ) , where n s and n ¯ s are the numbers of strange and anti-strange quarks. Strangeness is conserved in strong interactions. In heavy ion physics: produced strangeness means a number of pairs of strange and anti-strange particles, N s ¯ s Maciej Lewicki (UWr) Strangeness@N A 61/S HINE Feb 28 2018 1 / 29

  4. Strangeness in HIC Most strangeness produced in the form of: The lightest (anti-)strange mesons ( M ≈ 0 . 5 GeV ): ◮ K + – ( u ¯ s ) ◮ K 0 – ( d ¯ s ) K 0 – (¯ ¯ ◮ K − – (¯ us ) ds ) ◮ The lightest (anti-)strange baryons ( M ≈ 1 . 1 GeV ): ◮ Λ – ( uds ) ◮ ¯ u ¯ Λ – (¯ d ¯ s ) Strangeness neutral mesons: ( M ≈ 1 . 0 GeV ): ◮ φ – ( s ¯ s ) Maciej Lewicki (UWr) Strangeness@N A 61/S HINE Feb 28 2018 2 / 29

  5. Main strangeness carriers in A+A collisions at high baryon density strangeness conservation ¯ = s s isospin isospin symmetry symmetry ≈ ≈ ¯ K + K 0 K − K 0 ≪ high baryon ≈ density high baryon density ≪ ¯ Λ Λ – sensitive to strangeness content only – sensitive to strangeness content and baryon density Maciej Lewicki (UWr) Strangeness@N A 61/S HINE Feb 28 2018 3 / 29

  6. Strange definitions Wanted: strangeness / entropy Strangeness production: s � – number of s - ¯ � N s ¯ s pairs produced in a collision. s � = � Λ + ¯ Λ � + � K + ¯ 2 · � N s ¯ K � + � φ � + . . . multistrange hyperons Maciej Lewicki (UWr) Strangeness@N A 61/S HINE Feb 28 2018 4 / 29

  7. Strange definitions Wanted: strangeness / entropy Strangeness production: s � – number of s - ¯ � N s ¯ s pairs produced in a collision. s � = � Λ + ¯ Λ � + � K + ¯ 2 · � N s ¯ K � + � φ � + . . . multistrange hyperons s � ≈ � Λ � + � K + + K − + K 0 + ¯ 2 · � N s ¯ K 0 � Entropy production ∝ � π � The experimental ratio can be defined as: E S = � Λ � + � K + ¯ K � ≈ 2 · � N s ¯ s � � π � � π � Maciej Lewicki (UWr) Strangeness@N A 61/S HINE Feb 28 2018 4 / 29

  8. How to measure produced strangeness Decades ago... streamer chambers measured: ◮ charge ◮ momentum strange hadrons identified by reconstruction of their decays: ◮ Λ ◮ K 0 s � K 0 s � = 1 2 ( � K 0 � + � K 0 � ) s � = 2 � K 0 � + 2 � K 0 � ≈ � K 0 � + � K + � + � K − � + � K 0 � 4 � K 0 � Λ � + 4 � K 0 s � ≈ 2 � N ss � ≈ 2 � N ss � E s = � Λ � + 4 � K 0 s � � π � � π � Maciej Lewicki (UWr) Strangeness@N A 61/S HINE Feb 28 2018 5 / 29

  9. How to measure produced strangeness Nowadays: TPCs + ToF measured: ◮ momenta ◮ charges ◮ masses strange hadrons identified by mass measurement: ◮ K + ◮ K − � π � ≈ 3 s � ≈ � K + � + � K 0 � ≈ 2 · � K + � , � π + � + � π − � � � � N s ¯ 2 � K + � � N s ¯ s � ≈ 2 � π � � π + � 3 � K + � E S ≈ 4 � π + � 3 Maciej Lewicki (UWr) Strangeness@N A 61/S HINE Feb 28 2018 6 / 29

  10. Section 2 Strangeness and Phase Transition

  11. Strangeness and phase transition confined matter T C ≈ 150 MeV quark-gluon plasma − → K mesons (anti-)strange quarks Phase transition g K = 4 g s = 12 2 M ≈ 2 · 500 MeV 2 m ≈ 2 · 100 MeV Lightest strangeness carriers: relatively heavy kaons ( M > T C ) in the confined phase, relatively light strange quarks ( m � T C ) in QGP. Maciej Lewicki (UWr) Strangeness@N A 61/S HINE Feb 28 2018 7 / 29

  12. Strangeness in Statistical Model of Early Stage � 3 / 2 e − M / T � MT ≈ gV � for heavy particles gV 1 2 π � n � = d 3 p e E / T ± 1 ( 2 π ) 3 ≈ gV 2 π 2 4 · 45 T 3 for light particles > non-strange < < N ss > / - T ∝ MT 3 / 2 � K � � s � � u + d + g � ∝ T 3 · e − M / T T 3 = const ( T ) � π � T 3 Gaździcki, Gorenstein, Acta Phys.Polon. B30 (1999) 2705 Maciej Lewicki (UWr) Strangeness@N A 61/S HINE Feb 28 2018 8 / 29

  13. Strangeness in Statistical Model of Early Stage Strange/non-strange Temperature dependence on collision energy in SMES : particle ratio: > T[MeV] 300 non-strange 250 QGP 200 < 150 < N ss > / - 100 0 5 10 15 20 25 s NN [GeV] s NN Crossing the phase transition leads to a decrease of the strange/non-strange particle ratio – the horn-like structure – Marek’s horn. Maciej Lewicki (UWr) Strangeness@N A 61/S HINE Feb 28 2018 9 / 29

  14. Dynamical Approach by Rafelski-Müller strangeness production in confined matter strangeness production in QGP N + N → N + Y + K q 1 k 1 π + N → K + Y π + N → K + Y k 2 -q 2 π + Y → Ξ + K π + Y → Ξ + K π + Ξ → Ω + K π + Ξ → Ω + K q 1 k 1 k -q 2 2 1 fm/ c 100 fm/ c Rafelski, Müller, Phys. Rev. Lett. 48 (1982) 1066 Maciej Lewicki (UWr) Strangeness@N A 61/S HINE Feb 28 2018 10 / 29

  15. Rafelski-Müller Dynamical Approach > non-strange QGP < < N ss > / - s NN Equilibrium value reached in QGP ← fast strangeness production. No enhancement in the confined phase ← slow strangeness production in whole hadronic region. Maciej Lewicki (UWr) Strangeness@N A 61/S HINE Feb 28 2018 11 / 29

  16. Section 3 Strangeness at N A 61/S HINE

  17. N A 61/S HINE — facility MTPC-L T oF-L Vertex magnets T oF-F GAP VTPC-1 VTPC-2 T arget TPC FTPC-2/3 Beam PSD S4 S5 VD FTPC-1 V1 V1 p V0 x S1 S2 T oF-R CEDAR THC MTPC-R BPD-1 BPD-2 BPD-3 y z Beam detectors: TPCs: ToF: PSD: position electric charge E F – energy of tof projectile charge momentum spectators dE / dx mass reaction plane time Maciej Lewicki (UWr) Strangeness@N A 61/S HINE Feb 28 2018 12 / 29

  18. Particle identification — tof - dE / dx 120 120 ] ] 2 2 ) ) 2 1.4 Be+Be @40 A GeV/ c 2 1.4 Be+Be @40 A GeV/ c [(GeV/c [(GeV/c 1.2 1.2 100 100 2 p 2 p m 1 m 1 80 80 0.8 0.8 0.6 0.6 K - 60 60 + 0.4 0.4 K 0.2 + 0.2 π 40 40 + - e e π 0 0 20 20 -0.2 -0.2 -0.4 -0.4 0 0 0.8 1 1.2 1.4 1.6 1.8 0.8 1 1.2 1.4 1.6 1.8 dE/dx [a.u.] dE/dx [a.u.] Very good separation. Very efficient PID in mid-rapidity region. Maciej Lewicki (UWr) Strangeness@N A 61/S HINE Feb 28 2018 13 / 29

  19. Particle identification — dE / dx Ar+Sc @30 A GeV/ c Ar+Sc @30 A GeV/ c pions 400 pions protons protons kaons kaons deuterons deuterons 1000 electrons electrons 300 sum sum ∈ ∈ p [12.59; 15.85) p [12.59; 15.85) ∈ ∈ p [0.20; 0.30) p [0.20; 0.30) T T 200 charge = 1 charge = -1 500 100 % 5 % 5 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 ∆ 1.7 σ 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 ∆ 1.7 σ / / 0 0 − − 5 5 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 dE/dx [a. b.] dE/dx [a. b.] Probability PID. Applicable in forward-rapidity region. Maciej Lewicki (UWr) Strangeness@N A 61/S HINE Feb 28 2018 14 / 29

  20. Event selection The PSD is located most downstream on the beam line and measures the projectile spectator energy E F of the non-interacting nucleons of the beam nucleus. The energy measured by the PSD is used to select events classes corresponding to the collision "violence" ( ≈ centrality). Maciej Lewicki (UWr) Strangeness@N A 61/S HINE Feb 28 2018 15 / 29

  21. Section 4 Results on Strangeness

  22. Results on strangeness production Results from NA61/SHINE on identified hadrons produced in strong and electromagnetic processes in primary interactions: Ar+Sc [CPOD 2017, arXiv:1712.02417] Be+Be [Nucl. Phys. A 967, 35 (2017)] p+p [Eur. Phys. J. C74 (2014) 2794, Eur. Phys. J. C77 (2017) 671] World data on Pb+Pb , Au+Au , C+C , Si+Si and p+p : NA49 [Phys.Rev. C77, 024903 (2008)], [Phys.Rev. C66 (2002) 054902], [Phys.Rev. C86 (2012) 054903] [Eur. Phys. J. C68 (2010) 1], [Eur. Phys. J. C45 (2006) 343] ALICE [Phys. Lett. B736 (2014) 196], [Eur. Phys. J. C71 (2011) 1655], [Phys. Rev. Lett. (2012) 109] STAR [Phys. Rev. C79 (2009) 034909], [Phys. Rev. C96 (2017) 044904] BRAHMS [Phys. Rev. C72 (2005) 014908] p+p world data [Z. Phys. C65 (1995) 215], [Phys. Rev. C69 (2004) 044903] Maciej Lewicki (UWr) Strangeness@N A 61/S HINE Feb 28 2018 16 / 29

  23. m T spectra and inverse slope parameter 3 3 10 10 ] ] -1 -1 + ≈ - ≈ ) K ( y 0) ) K ( y 0) 2 2 [(GeV/c [(GeV/c Pb+Pb Pb+Pb 2 2 10 10 75A GeV/c 75A GeV/c T N T N dydm A dydm A 10 6 10 6 n n 1 1 / S / S 2 2 d H d H I I N N E E p p r r e e T l T l 1 i m 1 i m 1 m 1 m i i n n a a r r y y -1 -1 10 10 Be+Be Be+Be -2 -2 10 10 p+p p+p -3 -3 10 10 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 m - m [GeV] m - m [GeV] + + T K T K m T spectra at mid-rapidity fitted with an exponential function d 2 n � � 1 − m T dm T dy = A exp m T T which well describes K spectra for all beam momenta and all reactions The energy dependence of the inverse slope parameter T was predicted to be sensitive to the phase transition between confined matter and QGP. Maciej Lewicki (UWr) Strangeness@N A 61/S HINE Feb 28 2018 17 / 29

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend