numerical solution of partial differential equations
play

Numerical Solution of Partial Differential Equations Praveen. C - PowerPoint PPT Presentation

Numerical Solution of Partial Differential Equations Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in 31 January 2009 Praveen. C


  1. Numerical Solution of Partial Differential Equations Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in 31 January 2009 Praveen. C (TIFR-CAM) Numerical PDE Jan 31, 2009 1 / 40

  2. A continuous function u ( x ) = sin(2 πx ) , x ∈ [0 , 1] u ( x ) x Praveen. C (TIFR-CAM) Numerical PDE Jan 31, 2009 2 / 40

  3. Space of continuous functions • C ([0 , 1]) = Space of continuous functions • C ([0 , 1]) has infinitely many elements in it = ⇒ We say it is infinite dimensional • Example: u ( x ) = sin(2 πx ) is an element of C ([0 , 1]) • A computer has finite memory = ⇒ It cannot represent infinite dimensional objects Hence we need to approximate an infinite dimensional object using a finite dimensional space Praveen. C (TIFR-CAM) Numerical PDE Jan 31, 2009 3 / 40

  4. Discrete approximation u ( x ) = sin(2 πx ) , x ∈ [0 , 1] u ( x ) x 1 Sample at discrete set of N points, with spacing h = N − 1 x i = ( i − 1) h, 1 ≤ i ≤ N u i = u ( x i ) Praveen. C (TIFR-CAM) Numerical PDE Jan 31, 2009 4 / 40

  5. Discrete approximation u ( x ) = sin(2 πx ) , x ∈ [0 , 1] u ( x ) x U = [ u 1 , u 2 , . . . , u N ] ∈ R N U provides a finite dimensional approximation to the continuous function Praveen. C (TIFR-CAM) Numerical PDE Jan 31, 2009 5 / 40

  6. Discrete approximation u ( x ) = sin(2 πx ) , x ∈ [0 , 1] u ( x ) x Piecewise linear approximation u h ( x ) N → ∞ = ⇒ h → 0 and u h ( x ) → u ( x ) Praveen. C (TIFR-CAM) Numerical PDE Jan 31, 2009 6 / 40

  7. Ordinary Differential Equation • u = u ( x ) : function of single variable x • Second order ODE − d 2 u d x 2 = sin( x ) , x ∈ (0 , 2 π ) with boundary condition u (0) = u (2 π ) = 0 • Exact solution u ( x ) = sin( x ) This can be called a symbolic solution. Praveen. C (TIFR-CAM) Numerical PDE Jan 31, 2009 7 / 40

  8. Ordinary Differential Equation • If we have a general ODE − d 2 u d x 2 = f ( x ) , x ∈ (0 , 2 π ) there may not exist an explicit, analytical solution • Example: − d 2 u d x 2 = exp( − x 2 ) , x ∈ (0 , 2 π ) = ⇒ Need for numerical solution • Numerical techniques for ODE/PDE 1 Finite Difference Method 2 Finite Volume Method 3 Finite Element Method Praveen. C (TIFR-CAM) Numerical PDE Jan 31, 2009 8 / 40

  9. Finite Difference Method • Consider a general ODE − d 2 u d x 2 = f ( x ) , x ∈ ( a, b ) with boundary conditions u ( a ) = u a , u ( b ) = u b • Instead of finding a function that solves the ODE, find a discrete approximation to the solution • Divide computational domain ( a, b ) into N + 1 intervals each of size h = b − a N + 1 • Computational grid x i = ih, 0 ≤ i ≤ N + 1 Praveen. C (TIFR-CAM) Numerical PDE Jan 31, 2009 9 / 40

  10. Finite Difference Method • Discrete solution x 0 , x 1 , x 2 , . . . , x N , x N +1 u 0 , u 1 , u 2 , . . . , u N , u N +1 u i ≈ u ( x i ) , i = 0 , . . . , N + 1 • From boundary condition u 0 = u a , u N +1 = u b Hence, we need to find U = [ u 1 , u 2 , . . . , u N ] ∈ R N This is a finite dimensional problem Praveen. C (TIFR-CAM) Numerical PDE Jan 31, 2009 10 / 40

  11. Finite Difference Method • We must approximate the ODE at the interior grid points x 1 , x 2 , . . . , x N • Differentiation is limit of finite difference d u ( x + h ) − u ( x ) d xu ( x ) = lim h h → 0 • Finite difference approximation d xu ( x i ) ≈ u i +1 − u i d h Finite Difference Method Approximate differential operators by finite difference operators Praveen. C (TIFR-CAM) Numerical PDE Jan 31, 2009 11 / 40

  12. FDM: First derivative • From Taylor’s formula u i +1 = u i + hu ′ ( x i ) + h 2 2 u ′′ ( ξ ) • Forward difference approximation δ + u i := u i +1 − u i = u ′ ( x i ) + h 2 u ′′ ( ξ ) h � �� � O ( h ) Forward difference is first order accurate • Backward difference approximation δ − u i := u i − u i − 1 = u ′ ( x i ) + O ( h ) h • Central difference approximation δ 0 u i := u i +1 − u i − 1 = u ′ ( x i ) + O ( h 2 ) 2 h Praveen. C (TIFR-CAM) Numerical PDE Jan 31, 2009 12 / 40

  13. FDM: Second derivative • Second order derivative u ′ ( x + h/ 2) − u ′ ( x − h/ 2) u ′′ ( x ) = lim h h → 0 • Finite difference approximation u i +1 − u i − u i − u i − 1 = u i − 1 − 2 u i + u i +1 h h ∆ u i = h 2 h • Second order accurate ∆ u i = u ′′ ( x i ) + O ( h 2 ) Praveen. C (TIFR-CAM) Numerical PDE Jan 31, 2009 13 / 40

  14. Back to the ODE • Replace ODE − u ′′ ( x ) = f ( x ) , x ∈ ( a, b ) with finite difference approximation − ∆ u i = f i , i = 1 , 2 , . . . , N • At i = 1 h 2 u 1 − 1 2 h 2 u 2 = f 1 + 1 h 2 u a • For i = 2 , . . . , N − 1 − 1 h 2 u i − 1 + 2 h 2 u i − 1 h 2 u i +1 = f i • At i = N − 1 h 2 u N − 1 + 2 h 2 u N = f N + 1 h 2 u b Praveen. C (TIFR-CAM) Numerical PDE Jan 31, 2009 14 / 40

  15. FDM for ODE For N = 10 , putting all equations together       f 1 + u a u 1 2 − 1 0 0 0 0 0 0 0 0 h 2 u 2 f 2 − 1 2 − 1 0 0 0 0 0 0 0       u 3 f 3 0 − 1 2 − 1 0 0 0 0 0 0             0 0 − 1 2 − 1 0 0 0 0 0 u 4 f 4       1  0 0 0 − 1 2 − 1 0 0 0 0   u 5   f 5  =       h 2 0 0 0 0 − 1 2 − 1 0 0 0 u 6 f 6             0 0 0 0 0 − 1 2 − 1 0 0 u 7 f 7             0 0 0 0 0 0 − 1 2 − 1 0 u 8 f 8       0 0 0 0 0 0 0 − 1 2 − 1 u 9 f 9 f 10 + u b 0 0 0 0 0 0 0 0 − 1 2 u 10 h 2 or A h U h = b h We have N equations for the N unknowns: [ u 1 , u 2 , . . . , u N ] Praveen. C (TIFR-CAM) Numerical PDE Jan 31, 2009 15 / 40

  16. FDM for ODE • Matrix A h is invertible = ⇒ Solution to discrete problem exists • Efficient solution using Thomas Tri-diagonal algorithm 1 Numerical Exact 0.8 0.6 0.4 0.2 u(x) 0 −0.2 −0.4 −0.6 −0.8 −1 0 1 2 3 4 5 6 x Praveen. C (TIFR-CAM) Numerical PDE Jan 31, 2009 16 / 40

  17. Partial Differential Equations • Problems involving more than one independent variable u ( x, t ) : x is space, t is time u ( x, y ) : x, y denotes two space coordinates u ( x, y, t ) : x, y denotes two space coordinates, t is time = ⇒ Leads to Partial Differential Equation • One space and one time: u ( x, t ) ◮ Hyperbolic equation ∂ 2 u ∂t 2 = c 2 ∂ 2 u ∂x 2 ◮ Elliptic equation ∂t = µ∂ 2 u ∂u ∂x 2 ◮ Parabolic equation ∂x = µ∂ 2 u ∂u ∂t + c∂u ∂x 2 Praveen. C (TIFR-CAM) Numerical PDE Jan 31, 2009 17 / 40

  18. Simplest hyperbolic PDE • Linear, scalar, convection (advection) equation for u ( x, t ) ∂u ∂t + c∂u ∂x = 0 , x ∈ R with initial condition u ( x, 0) = u 0 ( x ) • Exact solution u ( x, t ) = u 0 ( x − ct ) u t = 0 t = ∆ t c ∆ t c > 0 x Praveen. C (TIFR-CAM) Numerical PDE Jan 31, 2009 18 / 40

  19. Hyperbolic PDE Wave A phenomenon in which some recognizable feature propagates with a recognizable speed Hyperbolic PDE A PDE which has wave-like solutions • Waves propagate in specific directions: • Linear, convection equation ◮ c > 0 = ⇒ wave moves to the right ◮ c < 0 = ⇒ wave moves to the left ◮ c is the speed at which waves propagate ◮ Finite speed of propagation ◮ Preserves shape of initial condition Praveen. C (TIFR-CAM) Numerical PDE Jan 31, 2009 19 / 40

  20. Hyperbolic PDE • Scalar, convection equation � ∂ � ∂t + c ∂ u = 0 ∂x contains one wave • Second order wave equation ∂ 2 u ∂t 2 = c 2 ∂ 2 u ∂x 2 ◮ can be factored � ∂ � � ∂ � ∂t + c ∂ ∂t − c ∂ u = 0 ∂x ∂x ◮ contains two waves, with speed + c and − c ◮ In fact, general solution is u ( x, t ) = f ( x − ct ) + g ( x + ct ) Praveen. C (TIFR-CAM) Numerical PDE Jan 31, 2009 20 / 40

  21. Elliptic PDE • Example: Heat equation ∂t = µ∂ 2 u ∂u ∂x 2 , x ∈ R with initial condition u ( x, 0) = u 0 ( x ) t t+ ∆ t • No waves; initial condition is damped or dissipated Praveen. C (TIFR-CAM) Numerical PDE Jan 31, 2009 21 / 40

  22. Parabolic PDE • Convection-diffusion equation ∂x = µ∂ 2 u ∂u ∂t + c∂u ∂x 2 contains convection and diffusion t+ ∆ t t • Damped wave-like solutions Praveen. C (TIFR-CAM) Numerical PDE Jan 31, 2009 22 / 40

  23. FDM for u t + cu x = 0 • Given u ( x, 0) = u 0 ( x ) , find solution for t > 0 : Initial Value Problem • Space-time grid t n ∆ t x ∆ x i • Numerical solution u n i u n i ≈ u ( x i , t n ) Numerical solution computed only at grid points Praveen. C (TIFR-CAM) Numerical PDE Jan 31, 2009 23 / 40

  24. FDM for u t + cu x = 0 • Forward difference in time ∂tu ( x i , t n ) ≈ u n +1 − u n ∂ i i ∆ t ∂ • Three choices for ∂x 1 Backward difference ∂xu ( x i , t n ) ≈ u n i − u n ∂ i − 1 ∆ x 2 Forward difference ∂xu ( x i , t n ) ≈ u n i +1 − u n ∂ i ∆ x 3 Central difference ∂xu ( x i , t n ) ≈ u n i +1 − u n ∂ i − 1 2∆ x Praveen. C (TIFR-CAM) Numerical PDE Jan 31, 2009 24 / 40

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend