numerical modeling of slender structures with contact and
play

Numerical modeling of slender structures with contact and friction - PowerPoint PPT Presentation

Numerical modeling of slender structures with contact and friction from dynamic simulation to inverse static design Florence Bertails-Descoubes - Laboratoire Jean Kuntzmann (EPI BiPop) September 23, 2016, Sminaire PIC, Grenoble Research Area


  1. Two Families of Choice of Coordinates θ Reduced model m ℓ ¨ coordinate θ θ = − mg sin θ Inextensibility is intrinsically preserved

  2. Two Families of Choice of Coordinates θ Reduced model m ℓ ¨ coordinate θ θ = − mg sin θ Inextensibility is intrinsically preserved Inversion gets easier

  3. More Generally : Spatial Discretization Choice of coordinates q ∈ R m : generalized coordinates, finite number K ( q , q 0 ) · ¨ + + = M ( q ) q A ( q , ˙ q ) F ( q , ˙ q , t ) s.t. C ( q ) = 0

  4. More Generally : Spatial Discretization Choice of coordinates q ∈ R m : generalized coordinates, finite number • Inertia matrix K ( q , q 0 ) · ¨ + + = M ( q ) q A ( q , ˙ q ) F ( q , ˙ q , t ) s.t. C ( q ) = 0

  5. More Generally : Spatial Discretization Choice of coordinates q ∈ R m : generalized coordinates, finite number • Inertia matrix • Internal elastic forces K ( q , q 0 ) · ¨ + + = M ( q ) q A ( q , ˙ q ) F ( q , ˙ q , t ) s.t. C ( q ) = 0

  6. More Generally : Spatial Discretization Choice of coordinates q ∈ R m : generalized coordinates, finite number • Inertia matrix • Internal elastic forces • Nonlinear inertial terms K ( q , q 0 ) · ¨ + + = M ( q ) q A ( q , ˙ q ) F ( q , ˙ q , t ) s.t. C ( q ) = 0

  7. More Generally : Spatial Discretization Choice of coordinates q ∈ R m : generalized coordinates, finite number • Inertia matrix • Internal elastic forces • Nonlinear inertial terms • External forces K ( q , q 0 ) · ¨ + + = M ( q ) q A ( q , ˙ q ) F ( q , ˙ q , t ) s.t. C ( q ) = 0

  8. More Generally : Spatial Discretization Choice of coordinates q ∈ R m : generalized coordinates, finite number • Inertia matrix • Internal elastic forces • Nonlinear inertial terms • External forces K ( q , q 0 ) · ¨ + + = M ( q ) q A ( q , ˙ q ) F ( q , ˙ q , t ) s.t. C ( q ) = 0 • Constraints

  9. More Generally : Spatial Discretization Choice of coordinates q ∈ R m : generalized coordinates, finite number • Inertia matrix • Internal elastic forces • Nonlinear inertial terms • External forces K ( q , q 0 ) · ¨ + + = M ( q ) q A ( q , ˙ q ) F ( q , ˙ q , t ) s.t. C ( q ) = 0 • Constraints

  10. More Generally : Spatial Discretization Choice of coordinates q ∈ R m : generalized coordinates, finite number • Inertia matrix • Internal elastic forces Nodal model • Nonlinear inertial terms • External forces K ( q , q 0 ) · ¨ + = q F ( q , ˙ q , t ) M s.t. C ( q ) = 0 • Constraints Nodal model : M is sparse , constraints , K is nonlinear

  11. More Generally : Spatial Discretization Choice of coordinates q ∈ R m : generalized coordinates, finite number • Inertia matrix • Internal elastic forces Reduced model • Nonlinear inertial terms • External forces K · ( q − q 0 ) · ¨ + + = M ( q ) q A ( q , ˙ q ) F ( q , ˙ q , t ) Reduced model : M is dense , no constraint , K is linear

  12. More Generally : Spatial Discretization Choice of coordinates q ∈ R m : generalized coordinates, finite number • Inertia matrix • Internal elastic forces • Nonlinear inertial terms • External forces K · ( q − q 0 ) · ¨ + + = M ( q ) q A ( q , ˙ q ) F ( q , ˙ q , t ) → We choose reduced and high-order coordinates : curvatures

  13. More Generally : Spatial Discretization Choice of coordinates q ∈ R m : generalized coordinates, finite number • Inertia matrix • Internal elastic forces • Nonlinear inertial terms • External forces K · ( q − q 0 ) · ¨ + + = M ( q ) q A ( q , ˙ q ) F ( q , ˙ q , t ) → We choose reduced and high-order coordinates : curvatures N.B. : The centerline will not be explicit

  14. Geometry of a Kirchhoff Rod • Centerline C ( s ) • Material frame R ( s ) R ( s ) = { n 0 ( s ) , n 1 ( s ) , n 2 ( s ) } with n 0 ( s ) = C ′ ( s ) • Degrees of freedom : • twist κ 0 ( s ) • curvatures κ 1 ( s ), κ 2 ( s ) • Darboux vector : Ω Ω Ω( s ) = κ 0 ( s ) n 0 ( s )+ κ 1 ( s ) n 1 ( s )+ κ 2 ( s ) n 2 ( s ) • Rotation of the material frame d n i ∀ i = 0 , 1 , 2 ds ( s ) = Ω Ω Ω( s ) ∧ n i ( s )

  15. Geometry : Darboux Problem κ 2 κ 1 κ 0 d n i ∀ i ds ( s ) = Ω Ω Ω( s ) ∧ n i ( s ) R (0) = R 0

  16. Geometry : Darboux Problem κ 2 κ 1 κ 0 d n i ∀ i ds ( s ) = Ω Ω Ω( s ) ∧ n i ( s ) R (0) = R 0 Exact solution • Existence of a unique solution • However, no explicit formula in the general case → Numerical integration may be computationally expensive

  17. Discrete Geometry : Super-Helix κ 2 κ 1 κ 0 d n i Ω ∀ i ds ( s ) = Ω Ω( s ) ∧ n i ( s ) R (0) = R 0

  18. Discrete Geometry : Super-Helix κ 2 κ 1 κ 0 d n i Ω ∀ i ds ( s ) = Ω Ω( s ) ∧ n i ( s ) R (0) = R 0 If κ 0 ( s ), κ 1 ( s ), κ 2 ( s ) are piecewise constant [Bertails et al. 2006]

  19. Discrete Geometry : Super-Helix κ 2 κ 1 κ 0 d n i Ω ∀ i ds ( s ) = Ω Ω( s ) ∧ n i ( s ) R (0) = R 0 If κ 0 ( s ), κ 1 ( s ), κ 2 ( s ) are piecewise constant [Bertails et al. 2006]

  20. Discrete Geometry : Super-Helix κ 2 κ 1 κ 0 d n i Ω ∀ i ds ( s ) = Ω Ω( s ) ∧ n i ( s ) R (0) = R 0 If κ 0 ( s ), κ 1 ( s ), κ 2 ( s ) are piecewise constant [Bertails et al. 2006] • On each element, closed-form solution for R ( s ) and C ( s )

  21. Discrete Geometry : Super-Helix κ 2 κ 1 κ 0 d n i Ω ∀ i ds ( s ) = Ω Ω( s ) ∧ n i ( s ) R (0) = R 0 If κ 0 ( s ), κ 1 ( s ), κ 2 ( s ) are piecewise constant [Bertails et al. 2006] • On each element, closed-form solution for R ( s ) and C ( s ) → Equations for a circular helix

  22. Discrete Geometry : Super-Helix κ 2 κ 1 κ 0 d n i Ω ∀ i ds ( s ) = Ω Ω( s ) ∧ n i ( s ) R (0) = R 0 If κ 0 ( s ), κ 1 ( s ), κ 2 ( s ) are piecewise constant [Bertails et al. 2006] • On each element, closed-form solution for R ( s ) and C ( s ) → Equations for a circular helix • Continuous connection of R ( s ) between elements

  23. Discrete Geometry : Super-Helix κ 2 κ 1 κ 0 d n i Ω ∀ i ds ( s ) = Ω Ω( s ) ∧ n i ( s ) R (0) = R 0 If κ 0 ( s ), κ 1 ( s ), κ 2 ( s ) are piecewise constant [Bertails et al. 2006] • On each element, closed-form solution for R ( s ) and C ( s ) → Equations for a circular helix • Continuous connection of R ( s ) between elements → All the kinematics is of closed-form → The centerline C ( s ) is C 1 -smooth

  24. Discrete Dynamics : Super-Helix 2 ] T ∈ R 3 N q = [ κ 1 0 , κ 1 1 , κ 2 2 , . . . , κ N 0 , κ N 1 , κ N

  25. Discrete Dynamics : Super-Helix 2 ] T ∈ R 3 N q = [ κ 1 0 , κ 1 1 , κ 2 2 , . . . , κ N 0 , κ N 1 , κ N Computing the terms of the ODE K · ( q − q 0 ) = M ( q ) · ¨ q + + A ( q , ˙ q ) F ( q , ˙ q , t )

  26. Discrete Dynamics : Super-Helix 2 ] T ∈ R 3 N q = [ κ 1 0 , κ 1 1 , κ 2 2 , . . . , κ N 0 , κ N 1 , κ N Computing the terms of the ODE K · ( q − q 0 ) = M ( q ) · ¨ q + + A ( q , ˙ q ) F ( q , ˙ q , t ) • Closed-form expression in q , ˙ q for each term

  27. Discrete Dynamics : Super-Helix 2 ] T ∈ R 3 N q = [ κ 1 0 , κ 1 1 , κ 2 2 , . . . , κ N 0 , κ N 1 , κ N Computing the terms of the ODE K · ( q − q 0 ) = M ( q ) · ¨ q + + A ( q , ˙ q ) F ( q , ˙ q , t ) • Closed-form expression in q , ˙ q for each term � ∂ C � L � T · ∂ C • Example : M i , j = ρ S ( s ) ( s ) d s ∂ q i ∂ q j 0

  28. Discrete Dynamics : Super-Helix 2 ] T ∈ R 3 N q = [ κ 1 0 , κ 1 1 , κ 2 2 , . . . , κ N 0 , κ N 1 , κ N Computing the terms of the ODE K · ( q − q 0 ) = M ( q ) · ¨ q + + A ( q , ˙ q ) F ( q , ˙ q , t ) • Closed-form expression in q , ˙ q for each term � ∂ C � L � T · ∂ C • Example : M i , j = ρ S ( s ) ( s ) d s ∂ q i ∂ q j 0 Time-solving • Mixed implicit/explicit Euler scheme M v + f = 0 avec v = ˙ q t +1

  29. Discrete Dynamics : Super-Helix 2 ] T ∈ R 3 N q = [ κ 1 0 , κ 1 1 , κ 2 2 , . . . , κ N 0 , κ N 1 , κ N Computing the terms of the ODE K · ( q − q 0 ) = M ( q ) · ¨ q + + A ( q , ˙ q ) F ( q , ˙ q , t ) • Closed-form expression in q , ˙ q for each term � ∂ C � L � T · ∂ C • Example : M i , j = ρ S ( s ) ( s ) d s ∂ q i ∂ q j 0 Time-solving • Mixed implicit/explicit Euler scheme M v + f = 0 avec v = ˙ q t +1 • Implicit elastic forces

  30. Discrete Dynamics : Super-Helix 2 ] T ∈ R 3 N q = [ κ 1 0 , κ 1 1 , κ 2 2 , . . . , κ N 0 , κ N 1 , κ N Computing the terms of the ODE K · ( q − q 0 ) = M ( q ) · ¨ q + + A ( q , ˙ q ) F ( q , ˙ q , t ) • Closed-form expression in q , ˙ q for each term � ∂ C � L � T · ∂ C • Example : M i , j = ρ S ( s ) ( s ) d s ∂ q i ∂ q j 0 Time-solving • Mixed implicit/explicit Euler scheme M v + f = 0 avec v = ˙ q t +1 • Implicit elastic forces → Stable simulations

  31. Discrete Geometry : Super-Clothoïd κ 2 κ 1 κ 0 d n i ∀ i ds ( s ) = Ω Ω Ω( s ) ∧ n i ( s ) R (0) = R 0

  32. Discrete Geometry : Super-Clothoïd κ 2 κ 1 κ 0 d n i ∀ i ds ( s ) = Ω Ω Ω( s ) ∧ n i ( s ) R (0) = R 0 If κ 0 ( s ), κ 1 ( s ), κ 2 ( s ) are piecewise-linear

  33. Discrete Geometry : Super-Clothoïd κ 2 κ 1 κ 0 d n i ∀ i ds ( s ) = Ω Ω Ω( s ) ∧ n i ( s ) R (0) = R 0 If κ 0 ( s ), κ 1 ( s ), κ 2 ( s ) are piecewise-linear

  34. Discrete Geometry : Super-Clothoïd κ 2 κ 1 κ 0 d n i ∀ i ds ( s ) = Ω Ω Ω( s ) ∧ n i ( s ) R (0) = R 0 If κ 0 ( s ), κ 1 ( s ), κ 2 ( s ) are piecewise-linear • On each element, the solution is a 3D clothoïd

  35. Discrete Geometry : Super-Clothoïd κ 2 κ 1 κ 0 d n i ∀ i ds ( s ) = Ω Ω Ω( s ) ∧ n i ( s ) R (0) = R 0 If κ 0 ( s ), κ 1 ( s ), κ 2 ( s ) are piecewise-linear • On each element, the solution is a 3D clothoïd • But no more closed-form solution...

  36. Discrete Geometry : Super-Clothoïd κ 2 κ 1 κ 0 d n i ∀ i ds ( s ) = Ω Ω Ω( s ) ∧ n i ( s ) R (0) = R 0 If κ 0 ( s ), κ 1 ( s ), κ 2 ( s ) are piecewise-linear • On each element, the solution is a 3D clothoïd • But no more closed-form solution... • How to integrate both precisely and efficiently ? → Power-series computation [Casati and Bertails-Descoubes 2013]

  37. Inverse Statics of a “Super-Model” Goal Given q , find q 0 , E I and ρ S such that q is a stable equilibrium

  38. Inverse Statics of a “Super-Model” Goal Given q , find q 0 , E I and ρ S such that q is a stable equilibrium Equilibrium condition � q − q 0 � K ( E I ) · = F ( q , ρ S ) → Solve a linear problem of size ∼ 3 N

  39. Inverse Statics of a “Super-Model” Goal Given q , find q 0 , E I and ρ S such that q is a stable equilibrium Equilibrium condition � q − q 0 � K ( E I ) · = F ( q , ρ S ) → Solve a linear problem of size ∼ 3 N Sufficient condition of stability E I ρ S ≥ A ( q )

  40. Inverse Statics of a “Super-Model” Goal Given q , find q 0 , E I and ρ S such that q is a stable equilibrium Equilibrium condition � q − q 0 � K ( E I ) · = F ( q , ρ S ) → Solve a linear problem of size ∼ 3 N Sufficient condition of stability E I ρ S ≥ A ( q ) → Compute the eigen values of a real symmetric matrix (Details in [Derouet-Jourdan et al. 2010] )

  41. Partial Conclusion • The static inversion is trivial for an isolated “Super-Model”

  42. Partial Conclusion • The static inversion is trivial for an isolated “Super-Model” • The only one difficulty is “purely” geometric : How to convert a given curve as a piecewise helix/clothoïd ?

  43. Partial Conclusion • The static inversion is trivial for an isolated “Super-Model” • The only one difficulty is “purely” geometric : How to convert a given curve as a piecewise helix/clothoïd ? • Robust and fast approximation algorithms can be designed Example : floating tangents algorithm [Derouet-Jourdan et al. 2013]

  44. Open Problems • How to extend to contacting fibers (with friction) ? • How to generalize to elastic surfaces (plates / shells) ?

  45. Open Problems • How to extend to contacting fibers (with friction) ? • How to generalize to elastic surfaces (plates / shells) ? → Work in progress...

  46. And for contacting fibers ? Output : natural curvatures ( q 0 ) Input : set of curves ( q ) of Super-Helices → Interpret the geometry as a set of Super-Helices at equilibrium under gravity and frictional contacts

  47. Inverse Modeling of Super-Helices Without contact K · ( q − q 0 ) = F ( q ) q 0 = q − K − 1 F ( q )

  48. Inverse Modeling of Super-Helices Without contact With frictional contact � K · ( q − q 0 ) = F ( q ) K · ( q − q 0 ) = F ( q ) + H ( q ) ⊤ r r r r r ∈ int ( K µ ) (Coulomb’s cone) r K µ r r r ( A ) ( P ) ( B ) � q 0 = q − K − 1 · ( F ( q ) + H ( q ) ⊤ r r r ) r r ∈ int ( K µ ) r q 0 = q − K − 1 F ( q ) Underdetermined problem

  49. Decoupling gravity and contacts

  50. Our approach • Estimate q 0 : q 0

  51. Our approach • Estimate q 0 : q 0 • Find the “best” force r r r , i.e., such that : q 0 � �� � 1 q − K − 1 ( H ⊤ r r + F ) − q 0 � 2 min 2 � r r r r s.t. r r ∈ int ( K µ ) r

  52. Our approach • Estimate q 0 : q 0 • Find the “best” force r r r , i.e., such that : q 0 � �� � 1 r + F ) − q 0 � 2 + γ � r q − K − 1 ( H ⊤ r r � 2 min 2 � r r r r r s.t. r r ∈ int ( K µ ) r • γ : regularization parameter

  53. Our approach • Estimate q 0 : q 0 • Find the “best” force r r r , i.e., such that : q 0 � �� � 1 r + F ) − q 0 � 2 + γ � r q − K − 1 ( H ⊤ r r � 2 min 2 � r r r r r s.t. r r ∈ int ( K µ ) r • γ : regularization parameter → Can be solved by reusing our direct solver for the dynamics ! (Details in [Derouet-Jourdan et al. 2013] )

  54. Heuristics for estimating q 0

  55. Heuristics for estimating q 0 1 q 0 = q ( L )

  56. Heuristics for estimating q 0 1 q 0 = q ( L ) 2 q 0 = q

  57. Heuristics for estimating q 0 1 q 0 = q ( L ) 2 q 0 = q Remember that : q 0 � �� � 1 r + F ) − q 0 � 2 + γ � r q − K − 1 ( H ⊤ r r � 2 min 2 � r r r r r s.t. r r r ∈ int ( K µ ) → Find r r r which minimizes the elastic energy of the rods

  58. Results 3 hairstyles (a) 8,922 contacts, (b) 30,381 contacts, (c) 14,358 contacts, 5s 19s 15s

  59. Discussion Many limitations... • Very simple heuristics to estimate q 0 • Large dependence upon the quality of input data • No stability criterion yet ( � = isolated case) • Many parameters are assumed to be known

  60. Discussion Many limitations... • Very simple heuristics to estimate q 0 • Large dependence upon the quality of input data • No stability criterion yet ( � = isolated case) • Many parameters are assumed to be known ... And yet • Some plausible results • The proposed solution is an exact equilibrium • Very fast inversion (a few seconds)

  61. And for Plates / Shells ?

  62. And for Plates / Shells ? Case of a developable shell (ongoing work with A. Blumentals)

  63. And for Plates / Shells ? Case of a developable shell (ongoing work with A. Blumentals) • Inextensibility yields 2 coupled Darboux problems

  64. And for Plates / Shells ? Case of a developable shell (ongoing work with A. Blumentals) • Inextensibility yields 2 coupled Darboux problems • Constant material curvatures yield a closed-form surface One single element

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend