nonlinear dimensionality reduction for functional
play

Nonlinear dimensionality reduction for functional computer code - PowerPoint PPT Presentation

Nonlinear dimensionality reduction for functional computer code modelling Benjamin Auder CEA - UPMC 24 august 2010 Thesis since 02/2008 PhD supervisors : G erard Biau (UPMC) Bertrand Iooss (EDF) Benjamin Auder (CEA - UPMC) Nonlinear


  1. Nonlinear dimensionality reduction for functional computer code modelling Benjamin Auder CEA - UPMC 24 august 2010 Thesis since 02/2008 PhD supervisors : G´ erard Biau (UPMC) Bertrand Iooss (EDF) Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 1 / 17

  2. Industrial context Framework : life span of reactor vessels. → Several sequences of accidents can occur. Goal = estimate their probabilities of occurrence. Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 2 / 17

  3. Industrial context Framework : life span of reactor vessels. → Several sequences of accidents can occur. Goal = estimate their probabilities of occurrence. Methodology Modelling Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 2 / 17

  4. Industrial context Framework : life span of reactor vessels. → Several sequences of accidents can occur. Goal = estimate their probabilities of occurrence. Methodology Modelling − → Simulation Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 2 / 17

  5. Industrial context Framework : life span of reactor vessels. → Several sequences of accidents can occur. Goal = estimate their probabilities of occurrence. Methodology Modelling − → Simulation − → Computation. → Sensitivity analysis, uncertainty propagation . . . Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 2 / 17

  6. Industrial context Framework : life span of reactor vessels. → Several sequences of accidents can occur. Goal = estimate their probabilities of occurrence. Methodology Modelling − → Simulation − → Computation. → Sensitivity analysis, uncertainty propagation . . . Improve the simulation stage to allow accurate computations Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 2 / 17

  7. ❘ ❘ Mathematical formulation n known couples ( x i , y i ) = inputs-outputs of a very slow code : Inputs x i ∈ ❘ p = initial state of physical system ; Outputs y i ∈ C ([ a , b ] , ❘ ) = evolutions of parameters. − → Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 3 / 17

  8. ❘ ❘ Mathematical formulation n known couples ( x i , y i ) = inputs-outputs of a very slow code : Inputs x i ∈ ❘ p = initial state of physical system ; Outputs y i ∈ C ([ a , b ] , ❘ ) = evolutions of parameters. Goal = prediction of functional data : y new ≃ ϕ ( x new) . − → Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 3 / 17

  9. Mathematical formulation n known couples ( x i , y i ) = inputs-outputs of a very slow code : Inputs x i ∈ ❘ p = initial state of physical system ; Outputs y i ∈ C ([ a , b ] , ❘ ) = evolutions of parameters. Goal = prediction of functional data : y new ≃ ϕ ( x new) . − → Statistical learning ”regression” ❘ p → C ([ a , b ] , ❘ ) Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 3 / 17

  10. ❘ ❘ ❘ ❘ Back to the ”simple” case of y i ∈ ❘ d Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 4 / 17

  11. ❘ ❘ ❘ ❘ Back to the ”simple” case of y i ∈ ❘ d dimensionality reduction : 1 r : C ([ a , b ] , ❘ ) → ❘ d (representation) ; Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 4 / 17

  12. ❘ ❘ Back to the ”simple” case of y i ∈ ❘ d dimensionality reduction : 1 r : C ([ a , b ] , ❘ ) → ❘ d (representation) ; statistical learning : 2 f : ❘ p (inputs) → ❘ d (reduced outputs) ; Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 4 / 17

  13. Back to the ”simple” case of y i ∈ ❘ d dimensionality reduction : 1 r : C ([ a , b ] , ❘ ) → ❘ d (representation) ; statistical learning : 2 f : ❘ p (inputs) → ❘ d (reduced outputs) ; output space parametrization : 3 R : ❘ d → C ([ a , b ] , ❘ ) (reconstruction). Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 4 / 17

  14. Back to the ”simple” case of y i ∈ ❘ d dimensionality reduction : 1 r : C ([ a , b ] , ❘ ) → ❘ d (representation) ; statistical learning : 2 f : ❘ p (inputs) → ❘ d (reduced outputs) ; output space parametrization : 3 R : ❘ d → C ([ a , b ] , ❘ ) (reconstruction). Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 4 / 17

  15. State of art (More or less) classical methods Functional linear regression : Faraway, 1997 ; Ramsay & Silverman, 2005, . . . Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 5 / 17

  16. State of art (More or less) classical methods Functional linear regression : Faraway, 1997 ; Ramsay & Silverman, 2005, . . . Decomposition on an orthonormal basis, then learning of d -dimensional coefficients : Chiou et al., 2004 ; Govaerts & No¨ el, 2005 ; Bayarri et al., 2007 ; Marrel, 2008 ; Monestiez & Nerini, 2009 Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 5 / 17

  17. State of art (More or less) classical methods Functional linear regression : Faraway, 1997 ; Ramsay & Silverman, 2005, . . . Decomposition on an orthonormal basis, then learning of d -dimensional coefficients : Chiou et al., 2004 ; Govaerts & No¨ el, 2005 ; Bayarri et al., 2007 ; Marrel, 2008 ; Monestiez & Nerini, 2009 (New) goal : minimize the representation dimension d , to simplify the model ; avoid overfitting, while keeping good performances. Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 5 / 17

  18. Riemannian Manifold Learning 1 Applications 2 Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 6 / 17

  19. Riemannian Manifold Learning 1 Applications 2 Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 7 / 17

  20. Local steps RML ≃ preservation of angles and geodesic distances. choose an origin curve y 0 among the y i , (e.g., the mean) ; 1 Fig. : Origin curve y 0 Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 8 / 17

  21. Local steps RML ≃ preservation of angles and geodesic distances. choose an origin curve y 0 among the y i , (e.g., the mean) ; 1 determine a local basis Q 0 = ( e 1 , . . . , e d ) for the tangent space 2 at y 0 (PCA on the neighborhoods curves) ; Fig. : Tangent plane at y 0 + local basis Q 0 Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 8 / 17

  22. Local steps RML ≃ preservation of angles and geodesic distances. choose an origin curve y 0 among the y i , (e.g., the mean) ; 1 determine a local basis Q 0 = ( e 1 , . . . , e d ) for the tangent space 2 at y 0 (PCA on the neighborhoods curves) ; compute the reduced coordinates z i or curves y i ”close” to y 0 by 3 projecting on Q 0 , Fig. : Local coordinates z i on the tangent plane Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 8 / 17

  23. Local steps RML ≃ preservation of angles and geodesic distances. choose an origin curve y 0 among the y i , (e.g., the mean) ; 1 determine a local basis Q 0 = ( e 1 , . . . , e d ) for the tangent space 2 at y 0 (PCA on the neighborhoods curves) ; compute the reduced coordinates z i or curves y i ”close” to y 0 by 3 projecting on Q 0 , then normalize to verify the identity � y − y 0 � = � x − x 0 � . 4 Fig. : Normalization of coordinates z i Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 8 / 17

  24. ”far” from y 0 Step 4 : for y far from y 0 (too far for last step to be accurate), y p = predecessor of y on a shortest path from y 0 y i 1 , . . . , y i d = neighbors of y p for which the z i coordinates are known (breadth-first) Fig. : Data y i in dim. D Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 9 / 17

  25. ”far” from y 0 Step 4 : for y far from y 0 (too far for last step to be accurate), y p = predecessor of y on a shortest path from y 0 y i 1 , . . . , y i d = neighbors of y p for which the z i coordinates are known (breadth-first) z = r ( y ) computed by.. ..preserving angles as much as possible : � zz p z i j ≃ � yy p y i j ; ..under the normalization constraint � y − y p � = � z − z p � . Fig. : z i = r ( y i ) in dim. d ≪ D Fig. : Data y i in dim. D Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 9 / 17

  26. Examples Fig. : 3D Swissroll, 400 points Fig. : RML Representation Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 10 / 17

  27. Examples Fig. : 3D Swissroll, 400 points Fig. : RML Representation Fig. : 3D Gaussian, 1000 points Fig. : RML Representation Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 10 / 17

  28. Riemannian Manifold Learning 1 Applications 2 Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 11 / 17

  29. Validation step Data : training = { ( x i , y i ) , i = 1 , . . . , n } ; test = { ( x ′ i , y ′ i ) , i = 1 , . . . , m } ; Model predictions : ˆ y ′ i = M ( x ′ i ), i = 1 , . . . , m . Benjamin Auder (CEA - UPMC) Nonlinear dimensionality reduction 24 august 2010 12 / 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend