non hermitian diffusion
play

Non-hermitian Diffusion Maciej A. Nowak Mark Kac Complex Systems - PowerPoint PPT Presentation

Non-hermitian Diffusion Maciej A. Nowak Mark Kac Complex Systems Research Center, Marian Smoluchowski Institute of Physics, Jagiellonian University, Krak ow, Poland July 13th, 2015 UPON 2015, Barcelona Supported in part by the grant


  1. Non-hermitian Diffusion Maciej A. Nowak Mark Kac Complex Systems Research Center, Marian Smoluchowski Institute of Physics, Jagiellonian University, Krak´ ow, Poland July 13th, 2015 UPON 2015, Barcelona Supported in part by the grant DEC-2011/02/A/ST1/00119 of National Centre of Science.

  2. Outline Why to bother about nonhermiticity Diffusion Redux Diffusion of hermitian matrices - ”Dysonian way” Diffusion of hermitian matrices - ”Burgulent way” Unraveling the diffusion of nonhermitian matrices [Burda, Grela, MAN, Tarnowski and Warcho� l, Phys. Rev. Lett. 113 (2014) 104102, Nucl. Phys. B897 (2015) 421] Example Prospects and open problems Maciej A. Nowak Shock waves in Ginibre ensemble

  3. Nonhermitian operators Nonhermitian quantum mechanics (resonances, complex potentials...) Euclidean Quantum Field Theory (finite density QCD) � T Statistics (lagged correlators) C i , j (∆) = 1 t =1 X i , t X j , t +∆ T Complexity (directed graphs/networks, non-backtracking operators for sparse systems) Maciej A. Nowak Shock waves in Ginibre ensemble

  4. Diffusion Redux Wiener process X t = X 0 + B t , where dB t = B t + dt − B t = N (0 , dt ) dt � F ( B t ) � = 1 d 2 � F xx ( B t ) � Proof: F ( B t + dt ) = F ( B t ) + F x ( B t ) dB t + 1 2 F xx ( B t ) dB 2 t < dB 2 Diffusion : < dB t > = 0 , t > = dt Ito trick: dF ( B t ) ≡ F x ( B t ) dB t + 1 2 F xx ( B t ) dt Heat equation (Smoluchowski-Fokker-Planck eq.) ∂ t ρ ( x , t ) = 1 � 2 ∂ xx ρ ( x , t ), where < F ( B t ) > ≡ F ( x ) ρ ( x , t ) dx 2 π t e − x 2 1 Example: For ρ ( x , 0) = δ ( x ), ρ ( x , t ) = √ 2 t Maciej A. Nowak Shock waves in Ginibre ensemble

  5. ”Dysonian way” ([Dyson; 1962]) After considerable and fruitless efforts to develop a Newtonian theory of ensembles, we discovered that the correct procedure is quite different and much simpler...... from F.J. Dyson, J. Math. Phys. 3 (1962) 1192 Wiener process: H τ = H 0 + B τ , where τ = t N Perturbation calculus for H τ + d τ = H τ + dH τ yields | <ψ i | dH τ | ψ j > | 2 λ i ( H τ + d τ ) = λ i + < ψ i | dH τ | ψ i > + 1 � i � = j 2 λ i − λ j Ito calculus: d λ i ≡ dB i N + 1 dt � √ N i � = j λ i − λ j Eigenvalues interact! Maciej A. Nowak Shock waves in Ginibre ensemble

  6. Diffusion of N by N hermitian matrices H = H † Gaussian Unitary Ensemble (GUE) � x ii if i = j H ij = x ij + iy ij if i < j √ 2 where all x ij , y ij drawn from standard Gaussians, so < ( dH ij ) 2 > = 1 < dH ij > = 0 , N dt Probability distribution ∂ t P ( H , t ) = LP ( H , t ), where � � ∂ 2 ∂ 2 ∂ 2 1 1 L = � ∂ 2 x kk + � ∂ 2 x ij + 2 N k 2 N i < j ∂ 2 y ij � < F ( H ) > t = [ dH ] P ( H , t ) F ( H ) Maciej A. Nowak Shock waves in Ginibre ensemble

  7. ”Burgulent way” We define d N ( z , t ) = det( z 1 N − H ) Integrable, exact eq. (for any N and for any initial conditions) ∂ t < d N ( z , t ) > t = − 1 2 N ∂ zz < d N ( z , t ) > t [Blaizot,MAN,Warcho� l; 2008-2013] Large N limit: lim N →∞ 1 N ∂ z ln < d N > = 1 N ∂ z < ln d N > = 1 N ∂ z < tr ln( z 1 N − H ) > ≡ g ( z , t ) (motivated by the Cole-Hopf transformation) � � �� N � Green’s function g ( z , t ) = 1 1 = 1 1 tr k =1 N z 1 N − H N z − λ k ”Heat equation” becomes inviscid complex Burgers equation ∂ t g + g ∂ z g = 0 (case of Voiculescu eq. ∂ t g + R ( g ) ∂ z g = 0) Spectrum from Sochocki Plemelj eq. 1 1 ′ ) λ − λ ′ ± i ǫ = P . V . λ − λ ′ ∓ i πδ ( λ − λ ρ ( λ, t ) = − 1 π lim ǫ → 0 ℑ g ( z ) | z = λ + i ǫ Shock phenomena at the edges of the spectrum Maciej A. Nowak Shock waves in Ginibre ensemble

  8. ”Burgelent way” - cont. ”Eulerian” solution of Burgers equation (on complex plane) reads g ( z , t ) = g 0 ( z − tg ( z , t )), so for simplest initial condition H 0 = 0, g ( z , 0) = g 0 ( z ) = 1 z , problem downgrades to the solution of the quadratic equation, i.e. reads √ z 2 − 4 t ). g ( z , t ) = 1 2 t ( z − Spectral density comes from the imaginary part of the Green’s √ 4 t 2 − λ 2 1 function, i.e. ρ ( λ, t ) = 2 π t (Diffusing Wigner’s semicircle) Diffusing Wigner’s semicircle (from Burgers equation) is a counterpart of the diffusing Gaussian (from the heat equation) in the world of large matrices. 1 Finite N effects appear as a spectral viscosity ν s ∼ 2 N , leading to universal spectral fluctuations in the vicinity of shock waves Maciej A. Nowak Shock waves in Ginibre ensemble

  9. Non-hermitian case - large N - electrostatic analogy Analytic methods break down, since spectra are complex ρ ( z , t ) = 1 �� i δ (2) ( z − λ i ( t )) � . N Electrostatic potential � 1 N tr ln[ | z − X | 2 + | w | 2 ] � w , t ) ≡ lim N →∞ φ ( z , ¯ z , w , ¯ � 1 � = lim N →∞ N ln D N where w ) = det ( Q ⊗ 1 N − X ) with D N ( z , ¯ z , w , ¯ � z � X � � − ¯ w 0 X = Q = X † ¯ 0 w z Electric field g = ∂ z φ ∂ 2 φ Gauss law ρ ( z , t ) = 1 z g | w =0 = 1 π ∂ ¯ z | w =0 π ∂ z ∂ ¯ | w | 2 Proof: δ (2) ( z ) = lim w → 0 1 ( | z | 2 + | w | 2 ) 2 π Maciej A. Nowak Shock waves in Ginibre ensemble

  10. Hidden variable Historically, | w | was treated as an infinitesimal regulator only [Brown;1986],[Sommers et al.;1988]. We promote w to full, complex-valued dynamical variable. Then, ”orthogonal direction” w unravels the eigenvector correlator O ( z , t ) = 1 1 k O kk δ (2) ( z − λ k ( t )) w φ | w =0 = �� � π ∂ w φ∂ ¯ , where N 2 O ij = < L i | L j >< R j | R i > and | L i > ( | R i > ) are left (right) eigenvectors of X . Maciej A. Nowak Shock waves in Ginibre ensemble

  11. Approach to nonhermitian matrices We supersede d N ( z ) = det( z 1 N − H ) by the determinant D N ( z , ¯ z , w , ¯ w ) = det ( Q ⊗ 1 N − X ) For nonhermitian matrices X , we have left and right k ¯ eigenvectors X = � k λ k | R k >< L k | = � λ k | L k >< R k | where X | R k > = λ k | R k > and < L k | X = λ k < L k | < L j | R k > = δ jk , but < L i | L j > � = 0 and < R i | R j > � = 0. D N = det[ U − 1 ( Q ⊗ 1 N − X ) U ] = � � z 1 N − Λ − ¯ w < L | L > det z 1 N − ¯ w < R | R > ¯ Λ Spectrum (Λ) entangled with overlap of eigenvectors O ij ≡ < L i | l j >< R j | R i > . Maciej A. Nowak Shock waves in Ginibre ensemble

  12. Random walk for the Ginibre ensemble We define random walk of X ij = x ij + iy ij , where 1 1 2 N dB y 2 N dB x dx ij = ij and dy ij = ij . √ √ � DX P ( X , t ) det( Q − X ) We consider < D N ( z , w , t ) > = Using Grassmannian integration tricks and the evolution 1 � ( ∂ 2 x ij + ∂ 2 equation ∂ t P ( X , τ ) = y ij ) P ( X , t ) we arrive at 4 N exact 2d diffusion equation ∂ t < D N ( z , w , t ) > = 1 N ∂ w ¯ w < D N ( z , w , t ) > Solution reads < D N ( z , | w | , t ) > = � ∞ � − N q 2 + | w | 2 � � � 2 Nq | w | 2 N 0 q exp I 0 D N ( z , q , t = 0) dq t t t z − X † 0 ) + | w | 2 ). where D N ( z , | w | , t = 0) = det(( z − X 0 )(¯ Maciej A. Nowak Shock waves in Ginibre ensemble

  13. ”Burgulent way” - nonhermitian case, N = ∞ limit Let define v ≡ | ∂ w φ | and | w | ≡ r . Note that v 2 controls eigevectors and g controls the complex spectrum The hermitian-case Burgers equation ∂ t g + g ∂ z g = 0 is now superimposed by the system = ∂ t v v ∂ r v ∂ z v 2 ∂ t g = Evolution of overlaps ( v ) prior to the evolution of spectra Shock phenomenon in eigenvector sector ”Missed ” complex plane ( w ) is relevant - quaternion ( Q ) description. Maciej A. Nowak Shock waves in Ginibre ensemble

  14. Examples 1 X 0 = 0 π t 2 ( t − | z | 2 )Θ( √ t − | z | ) 1 O ( z , t ) = [Chalker-Mehlig;1998],[Janik et al.;1998] π t Θ( √ t − | z | ) 1 ρ ( z , t ) = [Ginibre; 1964] 2 X 0 = diag ( a , a , ..., − a , − a , ... ) Maciej A. Nowak Shock waves in Ginibre ensemble

  15. The spiric example Initial condition X 0 = diag ( a , .. a , − a , ... − a ). Maciej A. Nowak Shock waves in Ginibre ensemble

  16. Evolution of singularities in ( z , w ) space. Ginibre versus spiric example Maciej A. Nowak Shock waves in Ginibre ensemble

  17. The spiric example cont. Spectral density (left) and eigenvector correlator (right) snapshots ρ ( x ) O ( x )/ N 0.4 0.15 0.3 0.10 0.2 0.05 0.1 2 x 2 x - 2 - 1 1 - 2 - 1 1 Maciej A. Nowak Shock waves in Ginibre ensemble

  18. Conclusions and open problems Formalism of Dysonian dynamics for non-hermitian RMM, involving coevolution of eigenvalues and eigenvectors , for arbitrary N Conjecture, that above presented scenario, based on Ginibre ensemble, is generic for all non-hermitian RMM - paramount role of eigenvectors Unexpected similarity between hermitian and non-hermitian RMM based on ”Burgulence” concepts Verification in various application of hermitian and non-hermitian random matrix models Unexplored mathematics Maciej A. Nowak Shock waves in Ginibre ensemble

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend