nmr relaxometry of paramagnetic molecules
play

NMR relaxometry of paramagnetic molecules Giacomo Parigi CERM - PowerPoint PPT Presentation

NMR relaxometry of paramagnetic molecules Giacomo Parigi CERM University of Florence The paramagnetic contribution to relaxation t M t M H t R H H t M H H t s O M e O O O H H + H H H H 2 O O t fast t M Bulk water H NH


  1. NMR relaxometry of paramagnetic molecules Giacomo Parigi CERM University of Florence

  2. The paramagnetic contribution to relaxation t M t ’ M H t R H H t M H H t s O M e O O O H H + H H H H 2 O O t fast t M Bulk water H NH t D Bulk water t M t R m S m I 1 R 1 = R 1dia + R 1para m I 2 r 1 =( R 1 - R 1dia )/[Me] R 1para =[Me] r 1 m S =658.2 m I r 1 , relaxivity = paramagnetic relaxation rate due to 1 mmol/dm 3 paramagnetic centers

  3. The paramagnetic contribution to relaxation Paramagnetic molecule Diamagnetic molecule Relaxivity 2 mM 2 mM (1 mM) 1.0 20 10 -1 ) 0.9 -1 ) 18 -1 ) 9 Proton relaxation rate (s Proton relaxation rate (s -1 mM 0.8 16 8 0.7 14 7 Proton relaxivity (s 0.6 12 6 - = 0.5 10 5 0.4 8 4 0.3 6 3 0.2 4 2 0.1 2 1 0.0 0 0 0.01 0.1 1 10 100 0.01 0.1 1 10 100 0.01 0.1 1 10 100 Proton Larmor frequency (MHz) Proton Larmor frequency (MHz) Proton Larmor frequency (MHz) m S m I 1 R 1 = R 1dia + R 1para m I 2 r 1 =( R 1 - R 1dia )/[Me] R 1para =[Me] r 1 m S =658.2 m I r 1 , relaxivity = paramagnetic relaxation rate due to 1 mmol/dm 3 paramagnetic centers

  4. Nucleus-electron dipole-dipole coupling Fluctuations in the Hamiltonian couple each spin to the external world (lattice), thus allowing for energy exchanges - m +   r + + N m  S w S - - w =  B S S 0 w I - w =  B + through space I I 0 m S ,m I

  5. Nucleus-electron dipole-dipole coupling - + R 1 M = w 0 +2 w 1 I + w 2 I w 1 w 0 + + The transition probabilities per unit time (for stochastic, stationary perturbations) are: w 2 w S - - - t t - t t t = =    / * / G ( ) G (0)e m | H | n n | H | m e w I c c mn mn 1 1 w 1 I - + If t c is the correlation time of the relaxation mechanism, MAGNETICALLY COUPLED for t < t c , there is a large correlation and G is large TWO-SPIN SYSTEM (DIPOLE-DIPOLE COUPLING) for t > t c , the correlation goes to zero t  0 0 E -  - w t - t t   2 i / H ( 0 ) c E w = t = J ( ) G ( 0 ) e d c   1 mn w = m n mn mn  w t 2 1 mn -  mn c  R 1  E dip 2 f ( t c , w )

  6. For stationary perturbations: - t t - t t / / * t = =    G ( ) G (0)e m | H | n n | H | m e c c mn mn 1 1 and   - w t - t t i / e c  - w t - t t i / w = t = = J ( ) G ( 0 ) e d G ( 0 ) c mn mn mn - w - t i 1 / c -  -    t 1   = - = = c 2 G ( 0 ) 0 2 G ( 0 )   mn mn - w - t wt  i 1 / i 1   c c   2 t wt =   *   c c 2 m | H | n n | H | m i       1 1 2 2  wt  wt 1 1   c c

  7. t 1  - w t i = t t W G ( ) e d mn mn mn 2  - t  w d -  - t i w = t t J ( ) G ( ) e mn mn    t wt w =   *   c c J ( ) 2 m | H | n n | H | m i       mn 1 1 2 2  wt  wt 1 1   c c   t 2 * =    c W m | H | n n | H | m     mn 1 1 2 2  w t 1    mn c

  8.   1       dip = -      *   * H I S I S I S F I S I S F I S I S F I S F I S F    - -    - -   - - z z 0 z z 1 z z 1 2 2  4  A B C D E F - + 2 I w 1 F w 0 0 + + *   - -  - -  = w | H | | H | 0 1 1 16 w 2 2 F 1 - - *    -  -   = w | H | | H | 1 1 1 4 w 1 I - + 2 *    --  --   = w | H | | H | F 1 2 1 1 2  =   I | | z 2

  9. 3 3 2   = -  -i ( t ) = - 2  - 2 i ( t ) = -   F ( t ) k ( 1 3 cos ( t )) F ( t ) k sin ( t ) e F ( t ) k sin ( t )cos ( t ) e 0 1 2 2 4 2 m   I  = 0 S k  3 4 r 1 4 1  2 2 2 2 2 2 4 2  =  -  = -     = | F | k | 1 3 cos | k ( 1 6 cos 9 cos ) d (cos ) k 0 2 5 - 1 3 2 2 2  = = | F | | F | k 1 2 10 2 t 2 t 2 1 4 k k = c = c w 0 2 2 2 2 2 2  w - w t  w - w t 16 5 1 ( ) 10 1 ( )   S I c S I c 2   m 2  2  2 t t t   1 3 6  -   1 = 0 I S c  c  c T     1  6 2 2 2 2 2 2  w t  w - w t  w  w t 10 4   r 1 1 ( ) 1 ( )   I c I S c I S c

  10. Nuclear relaxation due to the electron-nucleus dipolar coupling Solomon equation   2   m  m  t t 2 2 2   2 g S S 1 7 3 =   0  I e B c c R   1 M   w t  w t 6 2 2 2 2 15 4 r 1 1     S c I c 10 t c (s) 9 Spectral density ( t c units) 10 -10 8 10 -9 w =  B 10 -8 7 S S 0 7 J ( w S ) 6 w =  B 5 I I 0 4 3 2 Solomon, Phys. Rev. 99 (1955) 559 3 J ( w I ) 1 0 Bertini, Luchinat, Parigi, Ravera, 0.01 0.1 1 10 100 1000 NMR of paramagnetic molecules , Proton Larmor frequency (MHz) Elsevier, 2016

  11. A B 0 Three times modulate the dipolar Hamiltonian: e N e N 1) Electron relaxation t s B B 0 e N e 2) Rotation t r N 3  4 a t = r 3 kT C B 0 3) Chemical exchange t M e e N N

  12. Each time contributes to the decay of the correlation function: - - - - t - t - t = - t  t  t 1 1 1 exp( t / ) exp( t / ) exp( t / ) exp[ ( ) t ] s r M s r M - - - - 1 1 1 1  t = t  t  t c s r M t M t r t s s 10 -13 10 -7 10 -5 10 -11 10 -9

  13. The paramagnetic contribution to solvent relaxation R 1 M If t M << 1/ R 1 M H H t M 1 = t s r f M R O M e O 1 M H H f M = mole fraction of ligand nuclei, in water: 0 . 001 q Bulk water t R f M = 55 . 6 q = number of coordinated water molecules r 1 , relaxivity = paramagnetic relaxation rate due to 1 mmol/dm 3 paramagnetic centers

  14. Copper(II) aqua ion 3.0 298 K -1 ) -1 mM 2.5 Lorentzian dispersion 2.0 Proton relaxivity (s 1.5 1.0 R l.f. R l.f. =10/3 R h.f. 0.5 R h.f. 0.0 0.01 0.1 1 10 100 Proton Larmor frequency (MHz)

  15. Copper(II) aqua ion 298 K 3.0 Best fit (with q =6) -1 ) -1 mM 2.5 r = 0.27 nm 2.0 Proton relaxivity (s t c = 2.6  10 -11 s 1.5 ( t s = 3  10 -10 s ) 1.0 0.5 0 . 001 q = 0.0 r R 0.01 0.1 1 10 100 1 1 M 55 . 6 Proton Larmor frequency (MHz)

  16. Copper(II) aqua ion 4.0 Best fit 278 K -1 ) 3.5 -1 mM r = 0.27 nm 3.0 t c (278)= 4.0  10 -11 s Proton relaxivity (s 2.5 298 K 2.0 t c (298)= 2.6  10 -11 s 1.5 t c (338)= 0.9  10 -11 s 338 K 1.0 t M <1/ R 1 M  10 -5 s 0.5 3  4 a 0.0 t = 0.01 0.1 1 10 100 r 3 kT Proton Larmor frequency (MHz) B B 0 e N e N

  17. The paramagnetic contribution to solvent relaxation R 1 M r 1 = f m (1/ R 1 M + t M ) -1 H H t M t s O M e O H H If temperature , times are faster: t r and t M Bulk water t R Since R 1 M  t c , R 1 M 35 298 K -1 ) - t M << 1/ R 1 M r 1 30 -1 mM 25 278 K Proton relaxivity (s r 1 - t M >> 1/ R 1 M 20 288 K 15 10 5 0 0.01 0.1 1 10 100 Proton Larmor frequency (MHz)

  18. The paramagnetic contribution to solvent relaxation First and second-sphere contributions: 0 . 001 q t ’ M H =  -  t r i ( 1 / R ) H H t M 1 1 M , i M , i 55 . 6 t s O M e O i H H q = number of coordinated water molecules Bulk water t R - and t c,i = t c   2   m  m  t t   2 2 2 =  q 0 . 001 2 g S S 1 7 3  r i  0  I e B c c   1 6   w 2 t 2  w 2 t 2 r 55 . 6  4  15 1 1   i i S c I c - and t M,ss < t c,in       2 t t   m  2 2 m 2  t t 7 3 0 . 001   2 g S S 1 q 7 3 q     =   M , ss  M , ss     r 0 I e B is c c ss     1   w t  w t  w t  w t 6 2 2 2 2 6 2 2 2 2 55 . 6  4  15 r 1 1 r 1 1         is S c I c ss S M , ss I M , ss r 1 , relaxivity = paramagnetic relaxation rate due to 1 mmol/dm 3 paramagnetic centers

  19. Effect of t M t M = 1 ns 0.1 ns 0.01 ns Proton Relaxivity (s -1 mM -1 ) 0.001 ns 0.0001 ns 0.00001 ns Proton Larmor frequency (MHz)

  20. t s 0 for paramagnetic metal ions Cu(II) 300 ps VO(IV) 500 Ti(III) 40 Mn(II) 3500 t s < t r (30 ps) in aqua ions Fe(III) 90 Fe(II) 1 Cr(III) 400 Co(II) 3 Ni(II) 4 Gd(III) 120 (Low lying excited states make Ln(III) 0.1-1 Orbach process very efficient)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend