nf 3 qcd
play

Nf=3 QCD - PowerPoint PPT Presentation

Nf=3 QCD 1 / 40


  1. Nf=3 QCD 相図 中村 宜文 理化学研究所 計算科学研究機構 2015年9月5日 「有限温度密度系の物理と格子QCDシミュレーション」研究会 1 / 40

  2. 共同研究者 • 金 暁勇(アルゴンヌ国立研究所) • 藏増 嘉伸(筑波大学 / 理化学研究所) • 武田 真滋(金沢大学 / 理化学研究所) • 宇川 彰(理化学研究所) 2 / 40

  3. 内容 • QCD の相図の概観 • phase diagram for N f = 3 , µ = 0 • Critical endpoint of finite temperature phase transition for three flavor QCD, Phys. Rev. D 91, 014508 (2015) • phase diagram for N f = 3 , µ � 0 • Curvature of the critical line on the plane of quark chemical potential and pseudo scalar meson mass for three-flavor QCD, arXiv:1504.00113[hep-lat] 3 / 40

  4. QCD の相図の概観 4 / 40

  5. 有限温度有限密度(物理点) 初期宇宙 クォークグルーオンプラズマ相 温度 重イオン衝突実験 臨界終点 ハドロン相 カラー超伝導相 中性子星 陽子・中性子・・ 密度 5 / 40

  6. 3D φ 4 theory g g O(4) O(4) T T O(4) 1st order U(2)xU(2)/U(2) O(4) strong U ( 1 ) A anomaly weak U ( 1 ) A anomaly Basile et al. (hep-lat/0509018) 6 / 40

  7. Columbia plot ( possible ) standard scenario alternative scenario (weak U ( 1 ) A anomaly) Kanaya (arXiv:1012.4247[hep-lat]) 7 / 40

  8. phase diagram for N f = 3 , µ = 0 8 / 40

  9. Motivation • Critical endpoint (CEP) obtained with staggered and Wilson type fermions is inconsistent. → Results in the continuum limit is necessary m π at the endpoint at µ = 0 (bottom-left corner of Columbia plot) m E N t action π [MeV] 4 unimproved staggered 260 de Forcrand, 6 unimproved staggered 150 Philipsen ’07 4 p4-improved staggered 70 Karsch et al. ’03 6 stout-improved staggered ≲ 50 Endr˝ odi et al. ’07 6 HISQ ≲ 50 Ding et al. ’11,...’15 4 unimproved Wilson ∼ 1100 Iwasaki et al. ’96 • N f = 3 study is a stepping stone • curvature of critical surface • to the physical point We determine CEP on m l = m s line with clover fermions in the continuum limit 9 / 40

  10. crossover physical surface world 2nd order line temperature chemical potential quark mass s i g n p r o s e b 1st order r l e i m o u s transition surface 10 / 40

  11. crossover physical surface world 2nd order line temperature chemical potential quark mass s i g n p r o s e b 1st order r l e i m o u s transition surface 10 / 40

  12. crossover physical surface world 2nd order line temperature chemical potential quark mass s i g n p r o s e b 1st order r l e i m o u s transition surface 10 / 40

  13. Distinguishing between 1st, 2nd and crossover criterion first order second order crossover distribution double peak single peak singe peak ∝ N γ/ν ∝ N d χ peak - l l ∝ N − 1 /ν ∝ N − d β ( χ peak ) − β c - l l kurtosis at N l → ∞ K= -2 -2 < K < 0 - • scaling might work with wrong exponents near CEP • peaks in histgram might emerge only at large N l on weak 1st order • K does not depend on volume at 2nd order phase transition point M = N − β/ν f M ( tN 1 /ν ) l l N − 4 β/ν f M 4 ( tN 1 /ν ) l l ] 2 = f B ( tN 1 /ν K + 3 = B 4 ( M ) = ) l [ N − 2 β/ν f M 2 ( tN 1 /ν ) l l 11 / 40

  14. Method to determine CEP • determine the transition point (peak position of susceptibility) • determine kurtosis at transition point at each spatial lattice size • find intersection point of kurtosis by fit, K E + aN 1 /ν ( β − β E ) l light heavy 0 x V>V>V K t 1st order K x E K crossover -2 • interpolate/extrapolate √ t 0 m PS , t measured at transition point to β E • extrapolate √ t 0 m PS , E to the continuum limit • use scale determined from Wilson flow 1 / √ t 0 = 1 . 347 ( 30 ) GeV [Borsanyi et al. ’12] 12 / 40

  15. Higher moments i -th derivative of ln Z with respect to control parameter c : E = ∂ ln Z ∂ c • Variance V = ∂ 2 ln Z = σ 2 ∂ c 2 • Skewness ( e.g. right-skewed → S > 0 , left-skewed → S < 0 ) ∂ 3 ln Z S = 1 σ 3 ∂ c 3 • Kurtosis( e.g. Gaussian → K = 0 , 2 δ func. → K = − 2 ) ∂ 4 ln Z K = 1 = B 4 − 3 σ 4 ∂ c 4 13 / 40

  16. Simulations • action: Iwasaki gluon + N f = 3 clover (non perturbative c SW , degenerate) • observables • gauge action density, G • plaquette, P • Polyakov loop, L • chiral condensate, Σ • and their higher moments • temporal lattice size N t = 4 , 6 , 8 • statistics: O(100K) traj • preliminary N t = 10 • statistics: O(1K) traj 14 / 40

  17. 0.1434 -0.4 -1 -1.2 -1.4 -1.6 -1.8 0.1437 0.1436 0.1435 0 0.1433 0.1432 -0.2 -0.6 0 0.2 kurtosis of 𝑄 𝜆 4 3.5 3 2.5 2 1.5 1 0.5 -0.8 plaquette at β = 1 . 60 , N t = 4 𝑂 𝑡 = 6 𝑂 𝑡 = 8 𝑂 𝑡 = 10 𝑂 𝑡 = 12 𝑂 𝑡 = 16 susceptibility of 𝑄 15 / 40

  18. 0.2 -0.2 -1 0.1415 0.1414 0.1413 0.1412 0.1411 0.141 0.1 kurtosis of 𝑄 -0.4 0 -0.6 𝜆 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 -0.8 plaquette at β = 1 . 65 , N t = 4 𝑂 𝑡 = 6 𝑂 𝑡 = 8 𝑂 𝑡 = 10 𝑂 𝑡 = 12 𝑂 𝑡 = 16 susceptibility of 𝑄 16 / 40

  19. 0.75 1.600 0.15 0.18 0.85 0.80 -2 0.70 0.65 0.60 0.55 0.19 1.610 0.17 1.620 1.630 1.640 1.650 1.660 1.670 𝛾 0 -0.5 -1 -1.5 0.16 Kurtosis intersection at N t = 4 𝑂 𝑚 = 10 , 𝐻 𝑂 𝑚 = 12 , 𝐻 𝐿 𝑢 𝑂 𝑚 = 16 , 𝐻 𝑂 𝑚 = 10 , 𝑄 𝑂 𝑚 = 12 , 𝑄 𝑂 𝑚 = 16 , 𝑄 𝑂 𝑚 = 10 , 𝑀 𝑂 𝑚 = 12 , 𝑀 𝑂 𝑚 = 16 , 𝑀 󰠌𝑢 0 𝑛 PS,t 󰠌𝑢 0 𝑈 t 17 / 40

  20. 1.670 0.85 1.660 1.650 1.640 1.630 1.620 1.610 1.600 0.19 0.18 0.17 0.16 0.15 -2 0.80 𝛾 0.75 0.70 0.65 0.60 0.55 0 -0.5 -1 -1.5 Kurtosis intersection at N t = 4 𝑂 𝑚 = 10 , Σ 𝑂 𝑚 = 12 , Σ 𝐿 𝑢 𝑂 𝑚 = 16 , Σ 󰠌𝑢 0 𝑛 PS,t 󰠌𝑢 0 𝑈 t 18 / 40

  21. 1.75 1.68 3D 𝑃(4) 𝛾 𝑐(= 𝛿⁄𝜈) 1.77 1.76 0 1.74 1.73 1.72 1.71 1.7 1.69 1.67 3D 𝑎 2 1.66 1.65 1.64 1.63 1.62 1.61 1.6 3 2.5 2 1.5 1 0.5 3D 𝑃(2) γ/ν v.s. β 𝛾 𝐹 at 𝑂 𝑢 = 4 𝛾 𝐹 at 𝑂 𝑢 = 6 𝛾 𝐹 at 𝑂 𝑢 = 8 𝑂 𝑢 = 4, 𝐻 𝑂 𝑢 = 4, 𝑀 𝑂 𝑢 = 4, Σ 𝑂 𝑢 = 6, 𝐻 𝑂 𝑢 = 6, 𝑀 𝑂 𝑢 = 6, Σ 𝑂 𝑢 = 8, 𝐻 𝑂 𝑢 = 8, 𝑀 𝑂 𝑢 = 8, Σ χ max = aN γ/ν l 19 / 40

  22. continuum extrapolation for √ 0.01 G, P, L Σ SU(3) sysmmetric point 1st order crossover 𝑢 0.06 0.05 0.04 0.03 0.02 0.07 0 0.45 0.2 0.7 0.3 0.35 0.4 0.25 0.5 0.55 0.6 0.65 t 0 m PS , E 󰠌𝑢 0 𝑛 PS, E 1⁄𝑂 2 ▲ : √ = √ √ t 0 m phy ; sym ( m 2 π + 2 m 2 t 0 K ) / 3 ∼ 0 . 305 PS m PS , E = 304 ( 7 )( 14 )( 7 ) MeV 20 / 40

  23. continuum extrapolation for √ 0.01 G, P, L Σ 𝑢 0.07 0.06 0.05 0.04 0.03 0.02 0 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.1 0.09 t 0 T E 󰠌𝑢 0 𝑈 E 1⁄𝑂 2 T E = 131 ( 2 )( 1 )( 3 ) MeV 21 / 40

  24. Summary at N t = 4 , 6 , 8 • kurtosis intersection analysis is consistent with χ max analysis • results at N t = 4 is out of scaling region • √ t 0 m PS , E in the continuum limit is smaller than the SU(3) sysmmetric point, m PS , E / m phys , sym = 0 . 739 ( 17 )( 34 )( 17 ) PS • further studies at larger temporal sizes to obtain conclusive results are needed Phys. Rev. D 91, 014508 (2015) 22 / 40

  25. Σ at N t = 10 (1/3, preliminary) 14000 β =1.76 N s =16 β =1.77 N s =16 β =1.77 N s =20 β =1.78 N s =16 12000 β =1.78 N s =20 β =1.78 N s =24 β =1.79 N s =16 β =1.79 N s =20 10000 β =1.79 N s =24 β =1.80 N s =16 β =1.80 N s =20 8000 pbpz sus 6000 4000 2000 0 0.1386 0.1388 0.139 0.1392 0.1394 0.1396 0.1398 0.14 0.1402 κ 23 / 40

  26. Σ at N t = 10 (2/3, preliminary) 2 Z 2 β =1.76 N s =16 β =1.77 N s =16 β =1.77 N s =20 1.5 β =1.78 N s =16 β =1.78 N s =20 β =1.78 N s =24 β =1.79 N s =16 1 β =1.79 N s =20 β =1.79 N s =24 β =1.80 N s =16 0.5 β =1.80 N s =20 pbpz krt 0 -0.5 -1 -1.5 -2 0.1386 0.1388 0.139 0.1392 0.1394 0.1396 0.1398 0.14 0.1402 κ 24 / 40

  27. 0.13 1.800 0.30 0.35 𝛾 0.09 0.10 0.11 0.12 0.25 1.760 1.770 1.780 1.790 Σ at N t = 10 (3/3, preliminary) 󰠌𝑢 0 𝑛 PS,t 󰠌𝑢 0 𝑈 t assuming β E = 1 . 78 ( 1 ) 25 / 40

  28. G, P, L 0.13 1st order SU(3) sysmmetric point Σ 𝑢 0.09 0.1 0.11 0.12 0.14 𝑢 0.15 0.16 0.17 0 0.01 0.02 0.03 0.04 0.05 crossover Σ 0.07 0.6 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.65 G, P, L 0.7 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.06 continuum extrapolation and results at N t = 10 (preliminary) 󰠌𝑢 0 𝑈 E 󰠌𝑢 0 𝑛 PS, E 1⁄𝑂 2 1⁄𝑂 2 • assuming β E = 1 . 78 ( 1 ) at N t = 10 • excluding results at N t = 10 from continuum extrapolation • T E would not change very much • m PS , E may become smaller than results at smaller N t 26 / 40

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend