new developments on rational rbf
play

New developments on rational RBF Stefano De Marchi Department of - PowerPoint PPT Presentation

New developments on rational RBF Stefano De Marchi Department of Mathematics Tullio Levi-Civita University of Padova Montecatini, 14th February 2018 Outline From RBF to Rational RBF (RRBF) 1 2 Eigen-rational interpolant 3 Numerical


  1. New developments on rational RBF Stefano De Marchi Department of Mathematics “Tullio Levi-Civita” University of Padova Montecatini, 14th February 2018

  2. Outline From RBF to Rational RBF (RRBF) 1 2 Eigen-rational interpolant 3 Numerical experiments Lebesgue functions and constants Errors Landmark-based Image registration Progetto GNCS 2016-17 4 2 of 33

  3. From RBF to Rational RBF (RRBF) work with A. Martinez and E. Perracchione 3 of 33

  4. Notations Data: Ω ⊂ R d , X ⊂ Ω , test function f 1 X N = { x 1 , . . . , x N } ⊂ Ω , f = { f 1 , . . . , f N } , where f i = f ( x i ) 4 of 33

  5. Notations Data: Ω ⊂ R d , X ⊂ Ω , test function f 1 X N = { x 1 , . . . , x N } ⊂ Ω , f = { f 1 , . . . , f N } , where f i = f ( x i ) Approximation setting: 2 φ ( ε · ) : Conditionally Positive Definite (CPD) of order ℓ or Strictly Positive Definite (SPD) and radial ( ε , shape parameter) name φ ℓ globally supported: e − ε 2 r 2 Gaussian C ∞ (GA) 0 Generalized Multiquadrics C ∞ (GM) ( 1 + r 2 /ε 2 ) 3 / 2 2 locally supported: name φ ℓ Wendland C 2 (W2) ( 1 − ε r ) 4 + ( 4 ε r + 1 ) 0 Buhmann C 2 (B2) 2 r 4 log r − 7 / 2 r 4 + 16 / 3 r 3 − 2 r 2 + 1 / 6 0 4 of 33

  6. Notations Data: Ω ⊂ R d , X ⊂ Ω , test function f 1 X N = { x 1 , . . . , x N } ⊂ Ω , f = { f 1 , . . . , f N } , where f i = f ( x i ) Approximation setting: 2 φ ( ε · ) : Conditionally Positive Definite (CPD) of order ℓ or Strictly Positive Definite (SPD) and radial ( ε , shape parameter) name φ ℓ globally supported: e − ε 2 r 2 Gaussian C ∞ (GA) 0 Generalized Multiquadrics C ∞ (GM) ( 1 + r 2 /ε 2 ) 3 / 2 2 locally supported: name φ ℓ Wendland C 2 (W2) ( 1 − ε r ) 4 + ( 4 ε r + 1 ) 0 Buhmann C 2 (B2) 2 r 4 log r − 7 / 2 r 4 + 16 / 3 r 3 − 2 r 2 + 1 / 6 0 kernel notation K ε ( · , · ) native space N K (Ω) (where K is the reproducing kernel) finite subspace N K ( X N ) = span { K ( · , x ) : x ∈ X N } ⊂ N K (Ω) 4 of 33

  7. RBF Interpolation Given Ω , X N , f , K Aim Find P f ∈ N K ( X N ) s.t. ( P f ) X N = f 5 of 33

  8. RBF Interpolation Given Ω , X N , f , K Aim Find P f ∈ N K ( X N ) s.t. ( P f ) X N = f N � Classical interpolant: P f ( x ) = α k K ( x , x k ) , x ∈ Ω , x k ∈ X N . k = 1 [Hardy and Gofert 1975] used multiquadrics � K ( x , y ) = 1 + ǫ 2 � x − y � 2 . 5 of 33

  9. RBF Interpolation Given Ω , X N , f , K Aim Find P f ∈ N K ( X N ) s.t. ( P f ) X N = f N � Classical interpolant: P f ( x ) = α k K ( x , x k ) , x ∈ Ω , x k ∈ X N . k = 1 [Hardy and Gofert 1975] used multiquadrics � K ( x , y ) = 1 + ǫ 2 � x − y � 2 . � N k = 1 α k K ( x , x k ) P f ( x ) = P f ( x ) Rescaled interpolant: ˆ P g ( x ) = where P g � N k = 1 β k K ( x , x k ) is the kernel interpolant of g ( x ) = 1 , ∀ x ∈ Ω . Localized Rescaled and exactness on constants in [Deparis et al 2014]. In [DeM et al 2017] it is shown that it is a Shepard’s PU method. Linear convergence of localized rescaled interpolants [DeM and Wendland, draft 2017] 5 of 33

  10. Rational RBF definition � N R ( x ) = R ( 1 ) ( x ) k = 1 α k K ( x , x k ) R ( 2 ) ( x ) = � N k = 1 β k K ( x , x k ) [Jackbsson et al. 2009, Sarra and Bai 2017] = ⇒ RRBFs well approximate data with steep gradients or discontinuites [rational with PU+VSK in DeM et al. 2017]. 6 of 33

  11. Rational RBF Learning from rational functions, d = 1 polynomial case. a m x m + · · · + a 0 x 0 r ( x ) = p 1 ( x ) p 2 ( x ) = . x n + b n − 1 x n − 1 · · · + b 0 M = m + n + 1 unknowns (Pad´ e approximation). If M < N to get the coefficients we may solve the LS problem  N  2  �  � �   min � f ( x k ) − r ( x k )  .  � �     �    p 1 ∈ Π 1 m , p 2 ∈ Π 1  n k = 1 7 of 33

  12. Rational RBF Learning from rational functions, d = 1 polynomial case. a m x m + · · · + a 0 x 0 r ( x ) = p 1 ( x ) p 2 ( x ) = . x n + b n − 1 x n − 1 · · · + b 0 M = m + n + 1 unknowns (Pad´ e approximation). If M < N to get the coefficients we may solve the LS problem  N  2  �  � �   min � f ( x k ) − r ( x k )  .  � �     �    p 1 ∈ Π 1 m , p 2 ∈ Π 1  n k = 1 RBF case. Let X m = { x k , . . . , x k + m − 1 } , X n = { x j , . . . , x j + n − 1 } ⊂ X N be non empty, such that m + n ≤ N � k + m − 1 α i 1 K ( x , x i 1 ) R ( x ) = R ( 1 ) ( x ) i 1 = k R ( 2 ) ( x ) = (1) , � j + n − 1 β i 2 K ( x , x i 2 ) i 2 = j provided R ( 2 ) ( x ) � 0 , for all x ∈ Ω . 7 of 33

  13. Rational RBF Find the coefficients: I [Jackobsson et al 2009] proved the well-posedness of the interpolation on X N via R ( x ) = R ( 1 ) ( x ) � N i = 1 α i K ( x , x i ) R ( 2 ) ( x ) = , (2) � N k = 1 β k K ( x , x k ) 8 of 33

  14. Rational RBF Find the coefficients: I [Jackobsson et al 2009] proved the well-posedness of the interpolation on X N via R ( x ) = R ( 1 ) ( x ) � N i = 1 α i K ( x , x i ) R ( 2 ) ( x ) = , (2) � N k = 1 β k K ( x , x k ) Letting ξ = ( α T , β T ) ∈ R 2 N and B the N × 2 N matrix K ( x 1 , x 1 ) K ( x 1 , x N ) − f 1 K ( x 1 , x 1 ) − f 1 K ( x 1 , x N )  · · · · · ·      . . .     B = . . .   .  . . .           K ( x N , x 1 ) · · · K ( x N , x N ) − f N K ( x N , x 1 ) · · · − f N K ( x N , x N )  The system B ξ = 0 can be written as ( A − DA )( ξ ) = 0 with D = diag ( f 1 , . . . , f N ) , and A i , j = K ( x i , x j ) ... 8 of 33

  15. Rational RBF Find the coefficients: I [Jackobsson et al 2009] proved the well-posedness of the interpolation on X N via R ( x ) = R ( 1 ) ( x ) � N i = 1 α i K ( x , x i ) R ( 2 ) ( x ) = , (2) � N k = 1 β k K ( x , x k ) Letting ξ = ( α T , β T ) ∈ R 2 N and B the N × 2 N matrix K ( x 1 , x 1 ) K ( x 1 , x N ) − f 1 K ( x 1 , x 1 ) − f 1 K ( x 1 , x N )  · · · · · ·      . . .     B = . . .   .  . . .           K ( x N , x 1 ) · · · K ( x N , x N ) − f N K ( x N , x 1 ) · · · − f N K ( x N , x N )  The system B ξ = 0 can be written as ( A − DA )( ξ ) = 0 with D = diag ( f 1 , . . . , f N ) , and A i , j = K ( x i , x j ) ... which is underdetermined! 8 of 33

  16. Rational RBF Find the coefficients: I [Jackobsson et al 2009] proved the well-posedness of the interpolation on X N via R ( x ) = R ( 1 ) ( x ) � N i = 1 α i K ( x , x i ) R ( 2 ) ( x ) = , (2) � N k = 1 β k K ( x , x k ) Letting ξ = ( α T , β T ) ∈ R 2 N and B the N × 2 N matrix K ( x 1 , x 1 ) K ( x 1 , x N ) − f 1 K ( x 1 , x 1 ) − f 1 K ( x 1 , x N )  · · · · · ·      . . .     B = . . .   .  . . .           K ( x N , x 1 ) · · · K ( x N , x N ) − f N K ( x N , x 1 ) · · · − f N K ( x N , x N )  The system B ξ = 0 can be written as ( A − DA )( ξ ) = 0 with D = diag ( f 1 , . . . , f N ) , and A i , j = K ( x i , x j ) ... which is underdetermined! Non trivial solution Following [GolubReinsch1975] non-trivial solutions exist by asking || ξ || 2 = 1 i.e. solving the problem ξ ∈ R N , || ξ || 2 = 1 || B ξ || 2 . min 8 of 33

  17. Rational RBF Find the coefficients: II Obs: (Since R ( 1 ) ( x i ) = f i R ( 2 ) ( x i ) , i = 1 , . . . , N ) find q = ( R ( 2 ) ( x 1 ) , . . . , R ( 2 ) ( x N )) T and, as p = D q , then p = ( R ( 1 ) ( x i ) , ..., R ( 1 ) ( x N )) T . 9 of 33

  18. Rational RBF Find the coefficients: II Obs: (Since R ( 1 ) ( x i ) = f i R ( 2 ) ( x i ) , i = 1 , . . . , N ) find q = ( R ( 2 ) ( x 1 ) , . . . , R ( 2 ) ( x N )) T and, as p = D q , then p = ( R ( 1 ) ( x i ) , ..., R ( 1 ) ( x N )) T . If p, q are given then the rational interpolant is known by solving A α = p , A β = q . (3) 9 of 33

  19. Rational RBF Find the coefficients: II Obs: (Since R ( 1 ) ( x i ) = f i R ( 2 ) ( x i ) , i = 1 , . . . , N ) find q = ( R ( 2 ) ( x 1 ) , . . . , R ( 2 ) ( x N )) T and, as p = D q , then p = ( R ( 1 ) ( x i ) , ..., R ( 1 ) ( x N )) T . If p, q are given then the rational interpolant is known by solving A α = p , A β = q . (3) Existence & Uniqueness of (3): K is SPD Using the native space norms the above problem is equivalent Problem 1   1 || R ( 1 ) || 2 N K + || R ( 2 ) || 2   min (4)   .    N K  || f || 2   R ( 1 ) , R ( 2 ) ∈N K , 2 1 / || f || 2 2 || p || 2 2 + || q || 2 2 = 1 , R ( 1 ) ( x k )= f k R ( 2 ) ( x k ) . 9 of 33

  20. Rational RBF Find the coefficients: III || R ( 1 ) || 2 N K = α T A α , || R ( 2 ) || 2 N K = β T A β . and Then, from (3) and symmetry of A || R ( 1 ) || 2 N K = p T A − 1 p , || R ( 2 ) || 2 N K = q T A − 1 q . and Therefore, the Problem 1 reduces to solve Problem 2   1  q T D T A − 1 D q + q T A − 1 q  min  .       || f || 2 q ∈ R N ,  2 1 / || f || 2 2 || D q || 2 2 + || q || 2 2 = 1 . 10 of 33

  21. Rational RBF Find the coefficients: IV [Jackbsson 2009] show that this is equivalent to solve the following generalized eigenvalue problem Problem 3 Σ q = λ Θ q , with 1 1 D T A − 1 D + A − 1 , D T D + I N , Σ = and Θ = || f || 2 || f || 2 2 2 where I N is the identity matrix. 11 of 33

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend