smooth solutions in vasiliev theory
play

SMOOTH SOLUTIONS IN VASILIEV THEORY Andrea Campoleoni Universit - PowerPoint PPT Presentation

SMOOTH SOLUTIONS IN VASILIEV THEORY Andrea Campoleoni Universit Libre de Bruxelles & International Solvay Institutes A.C., T. Prochzka, J. Raeymaekers, 1303.0880 Workshop on Higher Spins, Strings and Duality, Galileo


  1. SMOOTH SOLUTIONS IN “VASILIEV THEORY” Andrea Campoleoni Université Libre de Bruxelles & International Solvay Institutes A.C., T. Procházka, J. Raeymaekers, 1303.0880 Workshop on “Higher Spins, Strings and Duality”, Galileo Galilei Institute, Firenze, 7/5/2013

  2. GRAVITY IN D = 2+1 Einstein-Hilbert action 1 e a ∧ R bc + 1 3 4 ⁄ 3 l 2 e a ∧ e b ∧ e c I = � abc 16 ⇥ G Field equations b + 1 d ⇤ ab + ⇤ ac ∧ ⇤ c l 2 e a ∧ e b = 0 ← constant curvature! R ab ≡ l de a + ⇤ a b ∧ e b = 0 T a ≡ Rewriting in terms of the metric 1 d 3 x √− g R + 2 3 4 ⁄ g µ ν = ⇥ ab e a µ e b I = ⇒ ν l 2 16 ⇤ G 2

  3. GRAVITY IN D = 2+1 Einstein-Hilbert action 1 e a ∧ R bc + 1 3 4 ⁄ 3 l 2 e a ∧ e b ∧ e c I = � abc 16 ⇥ G A couple of useful tricks... a = 1 2 ✏ a b,c . ! µ bc ! µ so(2,2) ≃ so(1,2) ⊕ so(1,2) ≃ sl(2,R) ⊕ sl(2,R) Rewriting in terms of the metric 1 d 3 x √− g R + 2 3 4 ⁄ g µ ν = ⇥ ab e a µ e b I = ⇒ ν l 2 16 ⇤ G 2

  4. GRAVITY IN D = 2+1 � � Einstein-Hilbert action Z ✓ ◆ 1 e a ∧ R a + 1 6 l 2 ✏ abc e a ∧ e b ∧ e c I = 8 ⇡ G A couple of useful tricks... a = 1 2 ✏ a b,c . ! µ bc ! µ so(2,2) ≃ so(1,2) ⊕ so(1,2) ≃ sl(2,R) ⊕ sl(2,R) Rewriting in terms of the metric 1 d 3 x √− g R + 2 3 4 ⁄ g µ ν = ⇥ ab e a µ e b I = ⇒ ν l 2 16 ⇤ G 2

  5. GRAVITY IN D = 2+1 Einstein-Hilbert action Achúcarro, Townsend (1986); Witten (1988) ( e = e a J a ✓ ◆ Z 1 e ∧ R + 1 with I = 3 l 2 e ∧ e ∧ e tr ! = ! a J a 16 ⇡ G A couple of useful tricks... a = 1 2 ✏ a b,c . ! µ bc ! µ so(2,2) ≃ so(1,2) ⊕ so(1,2) ≃ sl(2,R) ⊕ sl(2,R) Rewriting in terms of the metric 1 d 3 x √− g R + 2 3 4 ⁄ g µ ν = ⇥ ab e a µ e b I = ⇒ ν l 2 16 ⇤ G 2

  6. GRAVITY IN D = 2+1 Einstein-Hilbert action Achúcarro, Townsend (1986); Witten (1988) ( e = e a J a ✓ ◆ Z 1 e ∧ R + 1 with I = 3 l 2 e ∧ e ∧ e tr ! = ! a J a 16 ⇡ G A couple of useful tricks... a = 1 2 ✏ a b,c . ! µ bc ! µ so(2,2) ≃ so(1,2) ⊕ so(1,2) ≃ sl(2,R) ⊕ sl(2,R) e e Chern-Simons formulation on AdS 3 ⇣ ⌘ ⇣ ⌘ ⇤ = 1 e = l A − e A + e A A 2 2 2

  7. HIGHER SPINS IN D = 2+1 Natural generalization of the gravity frame action Blencowe (1989) ✓ ◆ Z 1 e ∧ R + 1 with R = d ! + ! ∧ ! I = 3 l 2 e ∧ e ∧ e tr 16 ⇡ G For g = sl(N,R) describes fields of “spin” 2,3,...,N A J A dx µ = ab T ab + · · · 1 2 a J a + e µ dx µ e = e µ e µ A J A dx µ = ab T ab + · · · 1 2 a J a + ⌅ µ dx µ ⌅ = ⌅ µ ⌅ µ Example: the sl(3,R) algebra [ J a , J b ] = � abc J c [ J a , T bc ] = � m a ( b T c ) m J m � � [ T ab , T cd ] = ⇤ ⇥ a ( c � d ) bm + ⇥ b ( c � d ) am 3

  8. HIGHER SPINS IN D = 2+1 Natural generalization of the gravity frame action Blencowe (1989) ✓ ◆ Z 1 e ∧ R + 1 with R = d ! + ! ∧ ! I = 3 l 2 e ∧ e ∧ e tr 16 ⇡ G For g = sl(N,R) describes fields of “spin” 2,3,...,N A J A dx µ = ab T ab + · · · 1 2 a J a + e µ dx µ e = e µ e µ A J A dx µ = ab T ab + · · · 1 2 a J a + ⌅ µ dx µ ⌅ = ⌅ µ ⌅ µ More in general: take any Lie algebra g with a non-degenerate Killing form and branch it under the adjoint action of sl(2,R) ↪ g ⇤ ⌅ ⇧ ⌥ g ( ⌅ ,a ) ⌃ g = sl (2 , R ) ⊕ dim = 2 ` + 1 ⌅ , a 3

  9. ⇒ HIGHER SPINS IN D = 2+1 Simple characterization in terms of Chern-Simons theories (for gauge fields) � � � � e = l , ω = 1 A − � A + � S = S CS [ A ] − S CS [ ⌃ A A A ] 2 2 Field equations → flatness conditions F = d e e A + e A ∧ e F = dA + A ∧ A = 0 . A Simple field equations, but rich space of solutions on AdS Non-trivial topology → black holes Gutperle, Kraus (2011) Gaberdiel, Gopakumar Boundary conditions → boundary dynamics, AdS/CFT... (2010) How to select “non-singular” solutions? Gutperle, Kraus (2011) Castro, Gopakumar, Gutperle, Raeymaekers (2011) 4

  10. OUTLINE Coupling ∞ spins: hs[ λ ] Chern-Simons theories Smoothness criteria for asymptotically AdS solutions “Analytic continuation” of the sl(N) conical surpluses Conclusion

  11. THE GAUGE SECTOR OF THE PROKUSHKIN-VASILIEV MODEL

  12. ⇒ ⇒ FRAME-LIKE DESCRIPTION FOR HS HS “vielbeins” and “spin connections” e µa 1 ... a s − 1 ω µb,a 1 ... a s − 1 Everything is traceless, then in D=2+1... a = 1 ≈ (example: ) 2 ✏ a b,c ! µ bc ! µ “Vielbeins” and “spin connections” have the same structure Structure of the higher-spin generators: e ab... traceless ⇒ T ab... traceless in ab... e ab... irreducible ⇒ [ J a , T b 1 ... b s − 1 ] = � m a ( b 1 T b 2 ... b s − 1 ) m 7

  13. SL(N) HIGHER-SPIN THEORIES For sl(3,R) the Jacobi identity fixes the algebra but... J ( a J b ) − 2 ⇣ 3 η ab J c J c ⌘ √ ⇒ [ J a , T bc ] = � m a ( b T c ) m , T ab = − σ � 3-dim repr. for ⇒ J m � � [ T ab , T cd ] = ⇤ ⇥ a ( c � d ) bm + ⇥ b ( c � d ) am J a Consider traceless and symmetric polynomials in J a (+ traceless projection in the a n indices) T a 1 ... a s ∼ J ( a 1 . . . J a s ) N-dim repr. for ⇒ N 2 - 1ind. traceless matrices out of T’s with s<N J a Hoppe (1982) General lesson to build higher-spin algebras: choose a representation of so(1,2) ≃ sl(2,R) and compute products of the representatives 8

  14. HIGHEST WEIGHT IRREPS OF SL(2,R) sl(2,R) algebra: [ J + , J − ] = 2 J 0 , [ J ± , J 0 ] = ± J ± 0 − 1 2( J + J − + J − J + ) = 1 Casimir: 4( λ 2 − 1) C 2 = J 2 λ≠ N ⇒ two pairs of conjugate irreps Realize the generators as e.g. ✓ ◆ J 0 = 1 J + = y @ x @ @ x − y @ J − = − x @ @ x , , @ y . 2 @ y and act on v i = x i y λ − i − 1 , v i = x λ − i − 1 y i , ¯ w i = x i y − ( λ + i +1) , w i = x − ( λ + i +1) y i , ¯ 9

  15. HIGHEST WEIGHT IRREPS OF SL(2,R) sl(2,R) algebra: [ J + , J − ] = 2 J 0 , [ J ± , J 0 ] = ± J ± 0 − 1 2( J + J − + J − J + ) = 1 Casimir: 4( λ 2 − 1) C 2 = J 2 λ≠ N ⇒ two pairs of conjugate irreps Realize the generators as e.g. ✓ ◆ J 0 = 1 J + = y @ x @ @ x − y @ J − = − x @ @ x , , @ y . 2 @ y and act on v i = x i y λ − i − 1 , v i = x λ − i − 1 y i , ¯ w i = x i y − ( λ + i +1) , w i = x − ( λ + i +1) y i , ¯ 9

  16. A FAITHFUL MATRIX REPR. OF HS[ ] λ ( J + ) jk = δ j, k +1 , Irrep of sl(2,R) with highest weight : ( J − ) jk = j ( j − λ ) δ j +1 , k , t 1 2 ( λ − 1). ( J 0 ) jk = 1 2( λ + 1 − 2 j ) δ j, k , Building the hs[ λ ] generators: Pope, Romans, Shen (1990) m = ( − 1) ℓ − m ( ℓ + m )! � � , ( J + ) ℓ ]] T ℓ J − , . . . [ J − , [ J − (2 ℓ )! � �� � ℓ − m terms Explicit realization: A.C., Procházka, Raeymaekers (2013) � [ ℓ ] n ℓ − m � ℓ − m � ( T ℓ m ) jk = ( − 1) ℓ − m [ ℓ − λ ] n [ j − m − 1 ] ℓ − m − n δ j, k + m , [ 2 ℓ ] n n n = 0 10

  17. A HS[ ] CHERN-SIMONS THEORY λ The satisfy T ℓ [ J i , T ` m ] = ( i ` − m ) T ` m m + i N 6 Trace: � tr v = λ ( λ 2 − 1) lim v jj , N → λ j = 1 Chern-Simons theory with hs[ λ ] ⊕ hs[ λ ] gauge algebra as a model for the interactions of spins 2,..., ∞ Bergshoeff, Blencowe, Stelle (1990); Vasiliev (1991) Field equations: F = d ¯ ¯ A + ¯ A ∧ ¯ F = dA + A ∧ A = 0 . A = 0 11

  18. A HS[ ] CHERN-SIMONS THEORY λ The satisfy T ℓ [ J i , T ` m ] = ( i ` − m ) T ` m m + i N 6 Trace: � tr v = λ ( λ 2 − 1) lim v jj , N → λ j = 1 Chern-Simons theory with hs[ λ ] ⊕ hs[ λ ] gauge algebra as a model for the interactions of spins 2,..., ∞ Bergshoeff, Blencowe, Stelle (1990); Vasiliev (1991) Field equations: F = d ¯ ¯ A + ¯ A ∧ ¯ F = dA + A ∧ A = 0 . A = 0 What are the “admissible” connections? 11

  19. PROPERTIES OF THE HS[ ] MATRICES λ Properties of the hs[ λ ] matrices: m The non-zero elements belong to the diagonal ts ( T ℓ m ) j, j − m m ts ( T ℓ The are polynomials in j m ) j, j − m Is that enough? What kinds of linear combinations do we have to consider? What are their properties? 12

  20. PROPERTIES OF THE HS[ ] MATRICES λ Properties of the hs[ λ ] matrices: Khesin, Malikov (1996) ∃ N such that if j > k+N at v j, k = 0 The matrix elements along a diagonal, for some fixed n, l, v j, j + n become polynomial in j for sufficiently large j 12

  21. PROPERTIES OF THE HS[ ] MATRICES λ Properties of the hs[ λ ] matrices: Khesin, Malikov (1996) ∃ N such that if j > k+N at v j, k = 0 The matrix elements along a diagonal, for some fixed n, l, v j, j + n become polynomial in j for sufficiently large j N The trace is still well defined X tr v ∼ lim v jj N → λ j = 1 12

  22. PROPERTIES OF THE HS[ ] MATRICES λ Properties of the hs[ λ ] matrices: Khesin, Malikov (1996) ∃ N such that if j > k+N at v j, k = 0 The matrix elements along a diagonal, for some fixed n, l, v j, j + n become polynomial in j for sufficiently large j N The trace is still well defined X tr v ∼ lim v jj N → λ j = 1 1) lim One can perform the substitution provided N → λ that is large enough + N . 12

  23. SMOOTH ASYMPTOTICALLY ADS SOLUTIONS

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend